54 research outputs found

    An Iterative Reconstruction Algorithm for Faraday Tomography

    Full text link
    Faraday tomography offers crucial information on the magnetized astronomical objects, such as quasars, galaxies, or galaxy clusters, by observing its magnetoionic media. The observed linear polarization spectrum is inverse Fourier transformed to obtain the Faraday dispersion function (FDF), providing us a tomographic distribution of the magnetoionic media along the line of sight. However, this transform gives a poor reconstruction of the FDF because of the instrument's limited wavelength coverage. The current Faraday tomography techniques' inability to reliably solve the above inverse problem has noticeably plagued cosmic magnetism studies. We propose a new algorithm inspired by the well-studied area of signal restoration, called the Constraining and Restoring iterative Algorithm for Faraday Tomography (CRAFT). This iterative model-independent algorithm is computationally inexpensive and only requires weak physically-motivated assumptions to produce high fidelity FDF reconstructions. We demonstrate an application for a realistic synthetic model FDF of the Milky Way, where CRAFT shows greater potential over other popular model-independent techniques. The dependence of observational frequency coverage on the various techniques' reconstruction performance is also demonstrated for a simpler FDF. CRAFT exhibits improvements even over model-dependent techniques (i.e., QU-fitting) by capturing complex multi-scale features of the FDF amplitude and polarization angle variations within a source. The proposed approach will be of utmost importance for future cosmic magnetism studies, especially with broadband polarization data from the Square Kilometre Array and its precursors. We make the CRAFT code publicly available.Comment: Accepted for publication in MNRAS. 13 pages and 12 figure

    Prenylflavonoids isolated from Epimedii Herba show inhibition activity against advanced glycation end-products

    Get PDF
    Introduction: As inhibitors of advanced glycation end products (AGEs), such as pyridoxamine, significantly inhibit the development of retinopathy and neuropathy in rats with streptozotocin-induced diabetes, treatment with AGE inhibitors is believed to be a potential strategy for the prevention of aging, age-related diseases, and lifestyle-related diseases, including diabetic complications. In the present study, the MeOH extract of Epimedii Herba (EH; aerial parts of Epimedium spp.) was found to inhibit the formation of Nε-(carboxymethyl)lysine (CML) and Nω-(carboxymethyl) arginine (CMA) during the incubation of collagen-derived gelatin with ribose.Materials and methods: EH was purchased from Uchida Wakan-yaku Co., and a MeOH extract was prepared. Several steps of column chromatography purified the extract. Each fraction was tested for inhibitory activity by ELISA using monoclonal antibodies for CML and CMA.Results: After activity-guided fractionation and purification by column chromatography, three new prenylflavonoids [named Koreanoside L (1), Koreanoside E1 (2), and Koreanoside E2 (3)] and 40 known compounds (4–43) were isolated from EH, and their inhibitory effects against CML and CMA formation were tested. Among these, epimedokoreanin B (8), epimedonin E (21), epicornunin B (22), and epicornunin F (24) inhibited the formation of both CML and CMA, with epimedokoreanin B (8) having the most potent inhibitory effect among the isolated compounds. To obtain the structure–activity relationships of 8, the phenolic hydroxy groups of 8 were methylated by trimethylsilyl-diazomethane to afford the partially and completely methylated compounds of 8. Prenyl derivatives of propolis (artepillin C, baccharin, and drupanin) were used in the assay.Discussion: As only 8 showed significant activity among these compounds, the catechol group of the B ring and the two prenyl groups attached to the flavanone skeleton were essential for activity. These data suggest that 8 could prevent the clinical complications of diabetes and age-related diseases by inhibiting AGEs

    Performance Test of QU-Fitting

    No full text
    QU-fitting is a model-fit method to reproduce the model of the Faraday Dispersion Function (FDF or Faraday spectrum), which is a probability distribution function of polarized intensity in Faraday depth space. In order to find the best-fit parameters of the model FDF, we adopt the Markov Chain Monte Carlo (MCMC) algorithm using Geweke’s convergence diagnostics. Akaike and Bayesian Information Criteria (AIC and BIC, respectively) are used to select the best model from several FDF fitting models. In this paper, we investigate the performance of the standard QU-fitting algorithm quantitatively by simulating spectro-polarimetric observations of two Faraday complex sources located along the same Line Of Sight (LOS), varying the gap between two sources in Faraday depth space and their widths, systematically. We fix the frequency bandwidth in 700–1800 MHz and make mock polarized spectra with a high Signal-to-Noise ratio (S/N). We prepare four FDF models for the fitting by changing the number of model parameters and test the correctness of MCMC and AIC/BIC. We find that the combination of MCMC and AIC/BIC works well for parameter estimation and model selection in the cases where the sources have widths smaller than 1/4 Full Width at Half Maximum (FWHM) and a gap larger than one FWHM in Faraday depth space. We note that when two sources have a gap of five FWHM in Faraday depth space, MCMC tends to be trapped in a local maximum likelihood compared to other situations

    Faraday Tomography Tutorial

    No full text
    The capabilities of wide-band polarization datasets that are now becoming available from precursors/pathfinders to the Square Kilometre Array (SKA), and eventually from the SKA itself, make it possible to use the Faraday tomography technique to facilitate the study of cosmic magnetism. While many programs enabling Faraday tomography have been developed by various authors and it is now becoming easier to apply the required techniques, the interpretation of the results is not straightforward. This is not only because of the lack of a one-to-one relation between the Faraday depth and the physical depth, and observational artifacts such as instrumental polarization, but also because the choice of the method that is used and its settings can be reflected in the results. Thus, it is essential to understand how the various methods enabling Faraday tomography are suited for the efficient application of the technique. In the workshop “The Power of Faraday Tomography„, we organized a Faraday tomography tutorial to help the participants understand the required tools. In this article, we summarize the basics of the techniques, and provide an overview of the tutorial
    • …
    corecore