5 research outputs found

    Regional microclimate humidity of clothing during light work as a result of the interaction between local sweat production and ventilation

    Get PDF
    Purpose – The aim of this study is to explore the influence of the clothing ventilation in three body regions on the humidity of the local clothing microclimates under five work-shirts immediately after the onset of sweating in light exercise. Design/methodology/approach – The clothing microclimate ventilations were measured at chest, back and upper arm using a manikin. Separate wear trials were performed to determine the sweat production and the humidity of the clothing microclimate at the same locations as where the ventilation was measured during light exercise. Findings – Every shirt shows the greatest value of ventilation index (VI) for the chest and the smallest one for the upper arm. The values of VI differ remarkably at the chest among the five shirts. Comfort sensation became gradually worse as the time passed after starting exercise. There was no significant difference among the clothing conditions in mean values of rectal temperature, local skin temperatures, microclimate temperatures, microclimate relative humidities and local sweat rates at three regions over 10?min after the onset of sweating. A relationship was observed between the ratio of the mean moisture concentration in the clothing microclimate to the mean sweat rate at the chest and the back and the VI. Originality/value – The results suggest that clothing ventilation should be measured in different body regions in response to sweat rates in corresponding regions

    The influence of local skin temperature on the sweat glands maximum ion reabsorption rate

    Get PDF
    PURPOSE: Changes in mean skin temperature (Tsk) have been shown to modify the maximum rate of sweat ion reabsorption. This study aims to extend this knowledge by investigating if modifications could also be caused by local Tsk. METHODS: The influence of local Tsk on the sweat gland maximum ion reabsorption rates was investigated in ten healthy volunteers (three female and seven male; 20.8 ± 1.2 years, 60.4 ± 7.7 kg, 169.4 ± 10.4 cm) during passive heating (water-perfused suit and lower leg water immersion). In two separate trials, in a randomized order, one forearm was always manipulated to 33 °C (Neutral), whilst the other was manipulated to either 30 °C (Cool) or 36 °C (Warm) using water-perfused patches. Oesophageal temperature (Tes), forearm Tsk, sweat rate (SR), galvanic skin conductance (GSC) and salivary aldosterone concentrations were measured. The sweat gland maximum ion reabsorption rates were identified using the ∆SR threshold for an increasing ∆GSC. RESULTS: Thermal [Tes and body temperature (Tb)] and non-thermal responses (aldosterone) were similar across all conditions (p > 0.05). A temperature-dependent response for the sweat gland maximum ion reabsorption rates was evident between 30 °C (0.18 ± 0.10 mg/cm2/min) and 36 °C (0.28 ± 0.14 mg/cm2/min, d = 0.88, p  0.05. CONCLUSION: The data indicate that small variations in local Tsk may not affect the sweat gland maximum ion reabsorption rates but when the local Tsk increases by > 6 °C, ion reabsorption rates also increase

    The effects of exercise and passive heating on the sweat glands ion reabsorption rates

    Get PDF
    The sweat glands maximum ion reabsorption rates were investigated (n = 12, 21.7 ± 3.0 years, 59.4 ± 9.8 kg, 166.9 ± 10.4 cm and 47.1 ± 7.5 mL/kg/min) during two separate endogenous protocols; cycling at 30% (LEX) and 60% VO2max(MEX) and one exogenous trial; passive heating (PH) (43°C water lower leg immersion) in 27°C, 50%RH. Oesophageal temperature (Tes), skin temperature (Tsk), and forearm, chest and lower back sweat rate (SR) and galvanic skin conductance (GSC) were measured. Salivary aldosterone was measured pre-and postheating (n = 3). Using the ∆SR threshold for an increasing ∆GSC to identify maximum sweat ion reabsorption rate revealed higher reabsorption rates during MEX compared to PH (mean of all regions: 0.63 ± 0.28 vs. 0.44 ± 0.3 mg/cm2/min, P  0.05). Aldosterone increased more during MEX (72.8 ± 36.6 pg/mL) compared to PH (39.2 ± 17.5 pg/mL) and LEX (1.8 ± 9.7 pg/mL). The back had a higher threshold than the forearm (P  0.05) (mean of all conditions; 0.64 ± 0.33, 0.42 ± 0.25, 0.54 ± 0.3 mg/cm2/min, respectively). Although the differences between conditions may be influenced by thermal or nonthermal mechanism, our results indicate a possibility that the sweat glands maximum ion reabsorption rates may be different between exercise and passive heating without mediating skin regional differences
    corecore