128 research outputs found

    Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish

    Get PDF
    In the eye, the function of same-type photoreceptors must be regionally adjusted to process a highly asymmetrical natural visual world. Here, we show that UV cones in the larval zebrafish area temporalis are specifically tuned for UV-bright prey capture in their upper frontal visual field, which may use the signal from a single cone at a time. For this, UV-photon detection probability is regionally boosted more than 10-fold. Next, in vivo two-photon imaging, transcriptomics, and computational modeling reveal that these cones use an elevated baseline of synaptic calcium to facilitate the encoding of bright objects, which in turn results from expressional tuning of phototransduction genes. Moreover, the light-driven synaptic calcium signal is regionally slowed by interactions with horizontal cells and later accentuated at the level of glutamate release driving retinal networks. These regional differences tally with variations between peripheral and foveal cones in primates and hint at a common mechanistic origin

    Zebrafish differentially process colour across visual space to match natural scenes

    Get PDF
    Animal eyes have evolved to process behaviourally important visual information, but how retinas deal with statistical asymmetries in visual space remains poorly understood. Using hyperspectral imaging in the field, in-vivo 2-photon imaging of retinal neurons and anatomy, here we show that larval zebrafish use a highly anisotropic retina to asymmetrically survey their natural visual world. First, different neurons dominate different parts of the eye, and are linked to a systematic shift in inner retinal function: Above the animal, there is little colour in nature and retinal circuits are largely achromatic. Conversely, the lower visual field and horizon are colour-rich and are predominately surveyed by chromatic and colour-opponent circuits that are spectrally matched to the dominant chromatic axes in nature. Second, in the horizontal and lower visual field bipolar cell terminals encoding achromatic and colour opponent visual features are systematically arranged into distinct layers of the inner retina. Third, above the frontal horizon, a high-gain ultraviolet-system piggy-backs onto retinal circuits, likely to support prey-capture

    Spectral inference reveals principal cone-integration rules of the zebrafish inner retina

    Get PDF
    Retinal bipolar cells integrate cone signals at dendritic and axonal sites. The axonal route, involving amacrine cells, remains largely uncharted. However, because cone types differ in their spectral sensitivities, insights into bipolar cells' cone integration might be gained based on their spectral tunings. We therefore recorded in vivo responses of bipolar cell presynaptic terminals in larval zebrafish to widefield but spectrally resolved flashes of light and mapped the results onto spectral responses of the four cones. This "spectral circuit mapping" allowed explaining ∼95% of the spectral and temporal variance of bipolar cell responses in a simple linear model, thereby revealing several notable integration rules of the inner retina. Bipolar cells were dominated by red-cone inputs, often alongside equal sign inputs from blue and green cones. In contrast, UV-cone inputs were uncorrelated with those of the remaining cones. This led to a new axis of spectral opponency where red-, green-, and blue-cone "Off" circuits connect to "natively-On" UV-cone circuits in the outermost fraction of the inner plexiform layer-much as how key color opponent circuits are established in mammals. Beyond this, and despite substantial temporal diversity that was not present in the cones, bipolar cell spectral tunings were surprisingly simple. They either approximately resembled both opponent and non-opponent spectral motifs already present in the cones or exhibited a stereotyped non-opponent broadband response. In this way, bipolar cells not only preserved the efficient spectral representations in the cones but also diversified them to set up a total of six dominant spectral motifs, which included three axes of spectral opponency

    Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina

    Get PDF
    The vertebrate inner retina is driven by photoreceptors whose outputs are already pre-processed; in zebrafish, outer retinal circuits split “color” from “grayscale” information across four cone-photoreceptor types. It remains unclear how the inner retina processes incoming spectral information while also combining cone signals to shape grayscale functions. We address this question by imaging the light-driven responses of amacrine cells (ACs) and bipolar cells (BCs) in larval zebrafish in the presence and pharmacological absence of inner retinal inhibition. We find that ACs enhance opponency in some bipolar cells while at the same time suppressing pre-existing opponency in others, so that, depending on the retinal region, the net change in the number of color-opponent units is essentially zero. To achieve this “dynamic balance,” ACs counteract intrinsic color opponency of BCs via the On channel. Consistent with these observations, Off-stratifying ACs are exclusively achromatic, while all color-opponent ACs stratify in the On sublamina

    Distinct synaptic transfer functions in same-type photoreceptors

    Get PDF
    Many sensory systems use ribbon-type synapses to transmit their signals to downstream circuits. The properties of this synaptic transfer fundamentally dictate which aspects in the original stimulus will be accentuated or suppressed, thereby partially defining the detection limits of the circuit. Accordingly, sensory neurons have evolved a wide variety of ribbon geometries and vesicle pool properties to best support their diverse functional requirements. However, the need for diverse synaptic functions does not only arise across neuron types, but also within. Here we show that UV-cones, a single type of photoreceptor of the larval zebrafish eye, exhibit striking differences in their synaptic ultrastructure and consequent calcium to glutamate transfer function depending on their location in the eye. We arrive at this conclusion by combining serial section electron microscopy and simultaneous ‘dual-colour’ two-photon imaging of calcium and glutamate signals from the same synapse in vivo. We further use the functional dataset to fit a cascade-like model of the ribbon synapse with different vesicle pool sizes, transfer rates, and other synaptic properties. Exploiting recent developments in simulation-based inference, we obtain full posterior estimates for the parameters and compare these across different retinal regions. The model enables us to extrapolate to new stimuli and to systematically investigate different response behaviours of various ribbon configurations. We also provide an interactive, easy-to-use version of this model as an online tool. Overall, we show that already on the synaptic level of single-neuron types there exist highly specialised mechanisms which are advantageous for the encoding of different visual features

    Uncoupling of neurogenesis and differentiation during retinal development

    Get PDF
    Conventionally, neuronal development is regarded to follow a stereotypic sequence of neurogenesis, migration, and differentiation. We demonstrate that this notion is not a general principle of neuronal development by documenting the timing of mitosis in relation to multiple differentiation events for bipolar cells (BCs) in the zebrafish retina using in vivo imaging. We found that BC progenitors undergo terminal neurogenic divisions while in markedly disparate stages of neuronal differentiation. Remarkably, the differentiation state of individual BC progenitors at mitosis is not arbitrary but matches the differentiation state of post-mitotic BCs in their surround. By experimentally shifting the relative timing of progenitor division and differentiation, we provide evidence that neurogenesis and differentiation can occur independently of each other. We propose that the uncoupling of neurogenesis and differentiation could provide neurogenic programs with flexibility, while allowing for synchronous neuronal development within a continuously expanding cell pool

    Thyroid hormone receptor beta mutations alter photoreceptor development and function in Danio rerio (zebrafish)

    Get PDF
    We investigate mutations in trbeta2, a splice variant of thrb, identifying changes in function, structure, and behavior in larval and adult zebrafish retinas. Two N-terminus CRISPR mutants were identified. The first is a 6BP+1 insertion deletion frameshift resulting in a truncated protein. The second is a 3BP in frame deletion with intact binding domains. ERG recordings of isolated cone signals showed that the 6BP+1 mutants did not respond to red wavelengths of light while the 3BP mutants did respond. 6BP+1 mutants lacked optomotor and optokinetic responses to red/black and green/black contrasts. Both larval and adult 6BP+1 mutants exhibit a loss of red-cone contribution to the ERG and an increase in UV-cone contribution. Transgenic reporters show loss of cone trbeta2 activation in the 6BP+1 mutant but increase in the density of cones with active blue, green, and UV opsin genes. Antibody reactivity for red-cone LWS1 and LWS2 opsin was absent in the 6BP+1 mutant, as was reactivity for arrestin3a. Our results confirm a critical role for trbeta2 in long-wavelength cone development
    corecore