26 research outputs found

    Topoisomerase I inhibitors: selectivity and cellular resistance

    No full text
    International audienceTopoisomerase I (top1) inhibitors (camptothecins and other structurally diverse compounds) are effective and promising anticancer agents. Determinants of selectivity toward cancer cells and resistance are multifactorial. These factors can be separated in three groups. The first is related to alterations in drug distribution and metabolism. The second group includes both quantitative and qualitative (mutations) differences in top I. The third group includes resistance and sensitivity factors downstream from the cleavage complexes. They include DNA repair, cell cycle checkpoints and apoptosis, and are probably key to the relative selectivity of camptothecins toward cancer cells and to clinical resistance. Copyright 1999 Harcourt Publishers Ltd

    Induction of topoisomerase I cleavage complexes by 1-β-d-arabinofuranosylcytosine (ara-C) in vitro and in ara-C-treated cells

    No full text
    1-β-d-Arabinofuranosylcytosine (Ara-C) is a nucleoside analog commonly used in the treatment of leukemias. Ara-C inhibits DNA polymerases and can be incorporated into DNA. Its mechanism of cytotoxicity is not fully understood. Using oligonucleotides and purified human topoisomerase I (top1), we found a 4- to 6-fold enhancement of top1 cleavage complexes when ara-C was incorporated at the +1 position (immediately 3′) relative to a unique top1 cleavage site. This enhancement was primarily due to a reversible inhibition of top1-mediated DNA religation. Because ara-C incorporation is known to alter base stacking and sugar puckering at the misincorporation site and at the neighboring base pairs, the observed inhibition of religation at the ara-C site suggests the importance of the alignment of the 5′-hydroxyl end for religation with the phosphate group of the top1 phosphotyrosine bond. This study also demonstrates that ara-C treatment and DNA incorporation trap top1 cleavage complexes in human leukemia cells. Finally, we report that camptothecin-resistant mouse P388/CPT45 cells with no detectable top1 are crossresistant to ara-C, which suggests that top1 poisoning is a potential mechanism for ara-C cytotoxicity
    corecore