22 research outputs found

    Beneficial effects of nasal high flow oxygen therapy after weaning from non-invasive ventilation: A prospective observational study

    Get PDF
    It remains unknown whether application of nasal high flow (NHF) is effective after liberation from non-invasive ventilation (NIV). This study was aimed at investigating the effect of NHF in patients ready for weaning from NIV. With institutional ethic committee approval, patients receiving NIV due to hypoxemic respiratory failure for more than 24 hours were enrolled. After passing the weaning criteria with continuous positive airway pressure (CPAP) mode [fraction of inspiratory oxygen (FIO2) ≦0.5, positive end expiratory pressure (PEEP) 4 cmH2O], patients received NHF (Flow 50 L/min, FIO2 ≦0.5) immediately after liberation from NIV. Before the initiation of the study, eight sequential patients who received oxygen via face mask after NIV treatment, served as the historical control. Respiratory parameters [partial pressure of arterial oxygen (PaO2) to FIO2 ratio (P/F ratio), respiratory rate (RR)] 1 hour after liberation from NIV were evaluated with those during NIV as the primary outcome. The frequency of rescue NIV therapy, intubation, and respiratory failure were also recorded. Nine eligible patients received NHF therapy after liberation from NIV. P/F ratio and RR did not change significantly compared with those during NIV (231 ± 43.6 versus 250.7 ± 34.2 mmHg, 20.8 ± 2.3 versus 21 ± 1.6 /min), while P/F ratio decreased significantly in the historical control group (194.3 ± 20.1 versus 255.9 ± 58.1 mmHg, p=0.013). Rescue NIV therapy, intubation, and respiratory failure never occurred in the NFH group, although two patients received NIV rescue therapy, of whom one was intubated in the historical control. NHF after liberation from NIV might be effective in patients recovering from hypoxemic respiratory failure

    Establishment and Clinical Applications of a Portable System for Capturing Influenza Viruses Released through Coughing

    Get PDF
    Coughing plays an important role in influenza transmission; however, there is insufficient information regarding the viral load in cough because of the lack of convenient and reliable collection methods. We developed a portable airborne particlecollection system to measure the viral load; it is equipped with an air sampler to draw air and pass it through a gelatin membrane filter connected to a cone-shaped, megaphone-like device to guide the cough airflow to the membrane. The membrane was dissolved in a medium, and the viral load was measured using quantitative real-time reverse transcriptasepolymerase chain reaction and a plaque assay. The approximate viral recovery rate of this system was 10% in simulation experiments to collect and quantify the viral particles aerosolized by a nebulizer. Using this system, cough samples were collected from 56 influenza A patients. The total viral detection rate was 41% (23/56), and the viral loads varied significantly (from <10, less than the detection limit, to 2240 viral gene copies/cough). Viable viruses were detected from 3 samples with ?18 plaque forming units per cough sample. The virus detection rates were similar among different groups of patients infected with different viral subtypes and during different influenza seasons. Among patients who did not receive antiviral treatment, viruses were detected in one of six cases in the vaccinated group and four of six cases in the unvaccinated group. We found cases with high viral titers in throat swabs or oral secretions but very low or undetectable in coughs and vice versa suggesting other possible anatomical sites where the viruses might be mixed into the cough. Our system is easy to operate, appropriate for bedside use, and is useful for comparing the viral load in cough samples from influenza patients under various conditions and settings. However, further large-scale studies are warranted to validate our results

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Schwannoma originating from the superior mediastinal phrenic nerve: a case report

    No full text

    Ruthenium Complex-Controlled Catalytic N

    No full text
    corecore