40 research outputs found

    Integrative and theoretical research on the architecture of a biological system and its disorder

    Get PDF
    Uchida S., Asai Y., Kariya Y., et al. Integrative and theoretical research on the architecture of a biological system and its disorder. Journal of Physiological Sciences , (2019); https://doi.org/10.1007/s12576-019-00667-8.An organism stems from assemblies of a variety of cells and proteins. This complex system serves as a unit, and it exhibits highly sophisticated functions in response to exogenous stimuli that change over time. The complete sequencing of the entire human genome has allowed researchers to address the enigmas of life and disease at the gene- or molecular-based level. The consequence of such studies is the rapid accumulation of a multitude of data at multiple levels, ranging from molecules to the whole body, that has necessitated the development of entirely new concepts, tools, and methodologies to analyze and integrate these data. This necessity has given birth to systems biology, an advanced theoretical and practical research framework that has totally changed the directions of not only basic life science but also medicine. During the symposium of the 95th Annual Meeting of The Physiological Society of Japan 2018, five researchers reported on their respective studies on systems biology. The topics included reactions of drugs, ion-transport architecture in an epithelial system, multi-omics in renal disease, cardiac electrophysiological systems, and a software platform for computer simulation. In this review article these authors have summarized recent achievements in the field and discuss next-generation studies on health and disease

    Are the long-term survival, proliferation, and differentiation of transplanted cells desirable in clinical application for spinal cord injury?

    Get PDF
    Cell transplantation studies of spinal cord injury have a premise that the transplants should be integrated in the host spinal cord tissue, differentiate into neural cells, and re-establish neural circuits, leading to the improvement of locomotor functions. However, the long-term survival, extensive proliferation, and/or differentiation of transplanted cells are not necessarily desirable clinically, and may, on the contrary, cause serious problems regarding the safety of transplants. The excessive proliferation, migration, and/or differentiation of transplanted cells may deteriorate the histological as well as functional organization of the host spinal cord. The present communication will discuss the feasibility of using three kinds of cell as transplants, including bone marrow-derived cells (BMDCs), Schwann cells, and neural stem/progenitor cells (NSPCs). BMDCs enhance tissue recovery and locomotor improvements; however, they disappear within 2-3 weeks after transplantation from the host spinal cord. This indicates that BMDCs do not serve as scaffolds for the growth of regenerating axons, but promote "endogenous" regenerating capacities of the host spinal cord, probably by secreting some trophic factors. This short-term survival of transplants, although appearing to be a disadvantage, guarantees the safety of cell transplantation. The transplantation of BMDCs is now at the Phase I/II stage of clinical application. Schwann cells have been studied extensively as a transplant material for spinal cord injury. Schwann cells survive long-term, and moderately proliferate and/or migrate in the spinal cord. It can be said that Schwann cells become well integrated in the host spinal cord. Therefore, they are regarded as a safe transplant. NSPCs proliferate, migrate, and differentiate extensively after transplantation in the host spinal cord. It is impossible at present to manipulate or control the proliferation/migration/differentiation of NPSCs to make them properly integrate in the host spinal cord. NSPCs are not considered safe for clinical application. BMDCs and Schwann cells are clinically relevant, while NS/PCs are clinically irrelevant

    Degenerative and of regenerative changes in the dorsal funiculus of the cryoinjured spinal cord of rats -electron microscopic study-

    Get PDF
    The morphological changes were examined in the dorsal funiculus after cryoinjury to the spinal cord at Th10 in the rat. Cryoinjury was performed by contacting a liquid nitrogen-frozen metal rod with the dorsal surface of the spinal cord. The frozen spinal cord was thawed spontaneously. This freeze-thawing treatment was repeated three times. The histological changes were examined by light and electron microscopy from 2 to 60 days after cryoinjury. The present study focused on the electron microscopic findings of the degenerative and regenerative changes of nerve fibers and glial cells following injury. In typical Waller degeneration, myelin sheaths of degenerated axons were separated from oligodendrocytes, and phagocytozed by macrophages. Within the lesion, while glial cells including oligodendrocytes were degraded, some axons were rescued from the damage, surviving as demyelinated axons after the degradation of associated oligodendrocytes. Such demyelinated axons were later remyelinated by oligodendrocytes or Schwann cells. This might be a major factor contributing to the locomotive recovery of the animal. Growth cones were formed even after a long period following cryoinjury at the proximal stump of the injured nerves. This suggests that nerve fibers have a strong ability to regenerate in the spinal cord dorsal funiculus. A cavity was usually formed in the epicenter to rostral part of the lesion. Cavity formation is a critical barrier to spinal cord regeneration. The main strategies for spinal cord regeneration might be to rescue and restore neural tissues from degeneration, and prevent cavity formation by providing a sufficient blood supply to ensure tissue survival and axonal outgrowth

    A phylogeny of the family Poritidae (Cnidaria, Scleractinia) based on molecular and morphological analyses.

    No full text
    The family Poritidae formerly included 6 genera: Alveopora, Goniopora, Machadoporites, Porites, Poritipora, and Stylaraea. Morphologically, the genera can be differentiated based on the number of tentacles, the number of septa and their arrangement, the length of the polyp column, and the diameter of the corallites. However, the phylogenetic relationships within and between the genera are unknown or contentious. On the one hand, Alveopora has been transferred to the Acroporidae recently because it was shown to be more closely related to this family than to the Poritidae by previous molecular studies. On the other hand, Goniopora is morphologically similar to 2 recently described genera, Machadoporites and Poritipora, particularly with regard to the number of septa (approximately 24), but they have not yet been investigated at the molecular level. In this study, we analyzed 93 samples from all 5 poritid genera and Alveopora using 2 genetic markers (the barcoding region of the mitochondrial COI and the ITS region of the nuclear rDNA) to investigate their phylogenetic relationships and to revise their taxonomy. The reconstructed molecular trees confirmed that Alveopora is genetically distant from all poritid genera but closely related to the family Acroporidae, whereas the other genera are genetically closely related. The molecular trees also revealed that Machadoporites and Poritipora were indistinguishable from Goniopora. However, Goniopora stutchburyi was genetically isolated from the other congeneric species and formed a sister group to Goniopora together with Porites and Stylaraea, thus suggesting that 24 septa could be an ancestral feature in the Poritidae. Based on these data, we move G. stutchburyi into a new genus, Bernardpora gen. nov., whereas Machadoporites and Poritipora are merged with Goniopora

    Methiin as a nematode attractant in Allium sativum

    No full text
    Damage to garlic (Allium sativum) caused by nematodes Ditylenchus destructor is becoming a serious agricultural hazard, leading to a great loss in garlic production. Once the garlic bulbs are invaded, the pathogenic nematode drastically increases in number along with the rotting of bulbs. It was therefore conceived that nematode attractants are present in the bulbs. Based on this hypothesis, chemical investigations were performed to explore a nematode attractant in A. sativum bulbs, which resulted in the identification of methiin (S-methyl-L-cysteine S-oxide) as an attractant. Bioassay and quantification experiments of methiin in extracts of A. sativum bulb led to the conclusion that methiin possesses sufficient potential to attract D. destructor into A. sativum bulbs. Moreover, an activity comparing study of methiin with its analogs showed that the sulfoxide functionality is essential for attractant activity. Moreover, methiin was revealed to attract Caenorhabditis elegans. Further investigation of methiin will help to elucidate the neuronal system of D. destructor.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore