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The morphological changes were examined in the dorsal funiculus after cryoinjury 
to the spinal cord at  Th10 in the rat. Cryoinjury was performed by contacting a 
liquid nitrogen-frozen metal rod with the dorsal surface of the spinal cord. The 
frozen spinal cord was thawed spontaneously. This freeze-thawing treatment was 
repeated three times. The histological changes were examined by light and electron 
microscopy from 2 to 60 days after cryoinjury. The present study focused on the 
electron microscopic findings of the degenerative and regenerative changes of nerve 
fibers and glial cells following injury. 
In typical Waller degeneration, myelin sheaths of degenerated axons were separated 
from oligodendrocytes, and phagocytozed by macrophages. Within the lesion, while 
glial cells including oligodendrocytes were degraded, some axons were rescued from 
the damage, surviving as demyelinated axons after the degradation of associated 
oligodendrocytes. Such demyelinated axons were later remyelinated by oligo-
dendrocytes or Schwann cells. This might be a major factor contributing to the 
locomotive recovery of the animal. Growth cones were formed even after a long 
period following cryoinjury at the proximal stump of the injured nerves. This 
suggests that nerve fibers have a strong ability to regenerate in the spinal cord 
dorsal funiculus. A cavity was usually formed in the epicenter to rostral part of the 
lesion. Cavity formation is a critical barrier to spinal cord regeneration. 
The main strategies for spinal cord regeneration might be to rescue and restore 
neural tissues from degeneration, and prevent cavity formation by providing a 
sufficient blood supply to ensure tissue survival and axonal outgrowth.

Key word : spinal cord cryoinjury, regeneration, electon microscopy, 
         oligodendrocyte, Schwann cell, myelination
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 Spinal cord regeneration has been exten-
sively studied by employing various tech-
niques including transplantation of Schwann 
cells (Oudega and Xu, 2006), olfactory en-
sheathing cells, (Plant et al, 2003), foetus spinal 

cord (Iwashita et al., 1994), foetus-derived 
neural stem cells (Wu et al., 2002; Bai et al., 
2003), macrophages (Rapalino et al., 1998), 
choroid plexus (Ide et al.,  2001; Matsumoto et 

al., 2003) and bone marrow stromal cells 

(Chopp et al., 2000; Hofstetter et al., 2002; Lee 
et  al., 2003; Ohta et al, 2004; Someya et al, 
2008; Shichinohe et al, 2008), and suppression 
of inhibitory molecules such as Nogo A 

(Freund et al., 2007). On the other hand, adult 
brain-derived neural stem cells (Mligiliche et 
al., 2005) were shown to survive after 
transplantation. Similarly, neural stem cells 
obtained from adult brain of dead rats (Xu et 

al., 2003) were demonstrated to be available as 
transplants. The first clinical case of treat-
ment of spinal cord injury by bone marrow 
stromal cell transplantation was reported 

(Saito et al., 2008). 
 In such spinal cord regeneration studies, 

precise histological findings are important 
to evaluate nerve regeneration within the  in-

jured site. Immunohistochemistry has been 
used as the main tool to identify cells and 
reveal interactions between different cell 
types in the same section in recent spinal 
cord regeneration studies. Over the long 
history of spinal cord regeneration studies, 

electron microscopy remained the most pow-
erful technique to demonstrate the precise 
changes of cells in the injured spinal cord 
tissue up until 90s. The electron microscop-
ic findings obtained at that time are still 

very informative for understanding the cha-
nges in nerve fibers and glial cells follow-
ing injury to the spinal cord. However, pro-
bably owing to its complicated technical 

procedures, electron microscopy has been de-
creasingly used in studies of spinal cord re-

generation. Young researchers in this field 
have had few opportunities to look at elec-
tron micrographs in the laboratory or in 

papers of this field. 
 With this background, we think that it is 

important to demonstrate the degeneration 
and regeneration of nerve fibers and glial 
cells by electron microscopy. The present 

study focused on the electron microscopic
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findings, effectively demonstrating how the 

nerve fibers and accompanying glial cells 
degenerate and regenerate following cryoinj-
ury to the white matter (dorsal funiculus) 
of the spinal cord.

 Materials and Methods

Surgery 

 Adult male rats, weighing 200-250 g, were 
used. Rats were anesthetized initially by the 
inhalation of ether, and maintained under 
anesthesia by inhalation of halothane. The 

spinal cord covered by the dura mater was 
exposed at the Th8-9 level. For cryoinjury, a 
copper rod cooled with liquid nitrogen was 
contacted with the dorsal part of the spinal 
cord (Fig. 1). The spinal cord was frozen 

immediately. After 3-5 seconds, the copper 
rod was detached from the spinal cord, and it 
thawed spontaneously within 10 seconds. 
Such freezing-thawing was repeated 3-5 times 

(Kitada et al., 1999). The wound was sutured 
layer by layer. Rats were maintained up to 2 
months after surgery before sacrifice. Ani-
mals were sacrificed at 2, 4, 7,  11, 16, 22, 35, 
and 60 days after surgery. Three to 5 rats 

were used at each time point.

Fig. 1 This picture shows how the spinal cord was 
cryoinjured, and the tissues were prepared 
A copper rod cooled with liquid nitrogen was con-
tacted with the dorsal surface of the spinal cord. 
at  Th10. The frozen dorsal column thawed spon-
taneously. This treatment was repeated three 
times. The cryolesion spread over the area in-
cluding the dorsal funiculus. After various time 
periods, the spinal cord was fixed, and transverse 
tissue sections were obtained from rostral, 
middle (epicenter), and caudal parts of the lesion.

Tissue  preparation

 Rats were anesthetized by the intraperi-
toneal injection of Nembutal (pentobarbi-
turate sodium, 50 mg/kg body weight), and 
fixed by perfusion through the heart with 50 
ml Ringer's solution followed by 150 ml 
fixative containing  2% paraformaldehyde and 

 2.5% glutaraldehyde in 0.1 M cacodylate
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buffer (pH 7.4). The cryoinjured segment was 
excised, and stored for 1 day in the same 
fixative. The segment was transversely cut 
into thin slices at three points as shown in Fig. 

 1, and then post-fixed for 2 hours in  1% 

osmium tetroxide solution (pH 7.4) at an 
ice-cold temperature. After post-fixation, 
specimens were dehydrated through the 

graded series of ethanol, and embedded in 
Epon 812. Thin sections for electron  mi-

croscopy were cut with a diamond knife and 
observed using a Hitachi 700 electron  mi-
croscope after double staining with lead 
citrate and uranyl acetate.

 Results

 Histology 
 The dorsal white column has the shape of an 

inverted triangle with the base at the dorsal 
surface of the spinal cord. The height and the 
base of the triangle are approximately 1 and 
1.5-2 mm, respectively. Axons in the dorsal 
column are 0.5-2.5  m in diameter, with the 
myelin sheaths 0.5-0.05  m thick. The ventral 
region of the dorsal white column is occupied 
by thin myelinated fibers of the cortico-spinal 
tract. 
 Cryoinjury was caused on the mid-line of 

the dorsal column. The extension of the 
cryoinjury was variable from  1/3 to  1/2 of 
the depth, and from  1/2 to 2/3 of the 
width at the dorsal  surface (Fig. 1).

 Two-four days after  cryoinjyry

 Axons were degraded by Waller degenera-

tion. Myelin sheaths of Waller-degenerated 
axons were separated from oligodendrocytes, 
and subsequently phagocytosed by macro-

phages (Fig. 2). In the lesion, axons and glial 
cells including astrocytes and oligoden-
drocytes were degraded, and myelin sheaths 
were completely disrupted into fragments 

(Fig. 3a,b). Blood vessels were also damaged. 
No extracellular matrix remained after the 

degeneration of cell components. The basal 
laminae of blood vessels disappeared. This 
feature is a finding unique to the central 
nervous system. In peripheral nerve injury, 
collagen fibrils and Schwann cell basal 

laminae in the endoneurium remained  fol-
lowing the degradation of axons and Schwann 
cells. 

 In some cases, demyelinated axons were

Fig. 2 Two days after cryoinjury.  Waller degeneration 
in the  rostral part 
This electron micrograph shows the  Waller de-
generation in the rostral part of the cryoinjured 
spinal cord. Axons (A) are all degenerated, and 

 myelin sheaths are degraded. A macrophage (M) 
can be seen to phagocytose myelin sheath debris 
(m). No  glial cells were found. Scale bar:  1 m

found  (Fig.  3c). Probably, oligodendrocytes 
had been injured, whereas axons remained 
intact in such cases. Subsequent to oligode-

ndrocyte degradation, myelin sheaths were 
disintegrated, and phagocytosed by macro-

phages. As a result, axons became naked. 
 In the periphery of the lesion, while 

many axons were degraded, some apparent-

ly intact myelinated axons with an oligode-
ndrocyte remained  (Fig.  3d). There were 
vacant spaces, probably due to edema, be-
tween these small-diameter nerve fibers. 
There were no astrocyte processes associa-

ted with these surviving myelinated nerve 
fibers. This suggests that astrocytes might 
have been more extensively degraded or ret-
racted from the lesion than oligodendrocy-

tes. 
 In the caudal part of the lesion, noticea-

ble changes occurred in nerve fibers. As 
the axons ran in the caudo-rostral direction 
in the dorsal column, the caudal site cor-
responded to the proximal stump of the  sev-

ered axons. The myelinated axons were 
swollen, and contained numerous organelles 
including mitochondria and membranous or-

ganelles  (Fig.  4a,b). These features resem-
ble those seen in the proximal stump of 
the injured peripheral nerve axons. This is
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Fig. 3 Two days after cryoinjury. Middle part 
of the lesion 
(a) Light micrograph showing the  mid-
dle parts of the lesion. In the middle 
part of the lesion, nerve fibers are 
degenerated with myelin sheaths exten-
sively disrupted (arrows), while myeli-
nated nerve fibers (asterisk) remain at 
the periphery of the lesion. Scale  bar: 

 20 m 
(b) This electron micrograph shows the 
axonal degeneration and myelin sheath 
disruption. Axons are degenerated (as-
terisks), and the  myelin sheath lamellae 
are disrupted into various types of 
fragment (arrows) 
(c) Some axons appear to be still alive 
(A) after the disruption of myelin 
sheaths and  demyelination. The axon 
(B) in the right corner is in the process 
of  demyelination. These demyelinated 
axons are present at the periphery of 
the lesion 
(d) This electron micrograph corre-
sponds to the region adjacent to the 
lesion in (a). Probably due to edema, 

 myelinated fibers have become sepa-
rated into individual fibers. It is clear 
that the oligodendrocytes (O) form 

 myelin sheaths on many axons. Scale 
 bar : l m in (b), (c), and (d).

 Vol.  7, 2008
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Fig. 4 Two days after cryoinjury. Caudal part of the lesion 
(a) Light micrograph showing the most caudal 
part of the lesion. Affected axons are almost 
demyelinated and swollen (asterisks). Considering 
that nerve fibers run in a caudo-rostral direction 
in the dorsal column, this feature indicates 
changes of injured  axons at the proximal stump 
in the spinal cord. Thin myelin sheaths (arrows) 
remain. Scale bar:  20 m 
(b) This electron micrograph was taken from the 
same level as (a). Axons (A) are swollen with 
thin myelin sheaths, and contain many 
mitochondria and membranous organelles. Scale 

 bar  :1 m

probably due to the interruption of axonal 
flow at the injured axonal stumps. 

 Although the basal laminae of blood  ves-
sels disappeared following the degradation 
of endothelial cells, the basal laminae faci 
ng the pia mater remained intact. Regener-

ating axons, 0.5-3.0   m in diameter, were 
found beneath such basal laminae (Fig. 5). 
They were in direct contact with the basal 
laminae or associated with glial cell pro-
cesses.  Though it was unknown whether 

these axons came from dorsal roots or 
from the intrinsic axons within the spinal 
cord, it was clear that the basal laminae 
served as scaffold for the growth of regener-
ating axons.

Fig. 5 Two days after cryoinjury 
This electron micrograph shows regenerating 
axons extending along the basal lamina (arrows) 
of the spinal cord surface on the pia mater.  Axons 
(A) contain numerous membranous organelles, 
indicating the feature of growth cones. 
Scale  bar:  1 m

One-three weeks after  cryoinjury

 Numerous macrophages were found in the 
space formed in the severely damaged region. 
No cellular reactions were noted except for the 
invasion of macrophages into such spaces. No 

cellular repair occurred in these spaces, 
resulting in cavity formation (Figs. 6a, 7a,b). 

 Axons with ordinary axoplasmic struc-
tures containing microtubules and occasion-
al mitochondria were considered as those 

that had survived, and become naked due 
to demyelination. There were various 
types of remyelination on such naked 
axons by oligodendrocytes  (Fig.  6b). Oligo-
dendrocyte processes containing bundles of 

microtubules in the dark cytoplasm surroun-
ded such naked axons, and occasionally 
formed thin myelin sheaths on them. 

 In the caudal part of the lesion, there 

were many axons with a diameter of  0.5-
3.0   m that contained numerous  mitochond-
ria and membranous organelles including 
vesicles. These features resembled those of 

growth cones of regenerating axons seen in 
the peripheral nerve  (Fig.  6c). These  regen-

erating axons were usually accompanied by 
the thin processes of oligodendrocytes.  Oli-

godendrocytes characteristically showed  rel-
atively dark cytoplasm, and contained an 

abundance of ribosomes and short and strai-

ght rER. Thin  oligodendrocyte processes 
with dark cytoplasm were attached to
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Fig. 6 One to three weeks after cryoinjury 
(a) This light micrograph shows the caudal part 
of the lesion  11 days after cryoinjury. Almost 
all the dorsal column is affected by cryoinjury. 
The left part of the dorsal column became a 
cavity (asterisk) containing macrophages, while 
in the right part (star), the affected tissue 
remains. The cavity occupied the dorsal column 
in the rostral and middle part. Scale bar:  10 m 
(b) Remyelination of the axons occurred in the 
tissue-retaining region as shown in (a). These 
thinly myelinated axons (A) are considered to be 
those that had survived after demyelination by 
myelin sheath disruption. Remyelination was 
carried out by oligodendrocytes  (O) 
(c) Growth cones (G) are noted in the caudal part 
of the lesion. These axons are enlarged, and  con-
tain numerous mitochondria and membranous 
organelles in the axoplasm, the features of 
growth cones. Growth cone presence means that 
the spinal cord axons retain the ability to 
regenerate even in the later stage of injury 
Scale  bar:  l m in (b) and (c)
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growth cones. 
 A large cavity was formed in the rostral 

part  (Fig.  7a). In the middle part, many 
myelinated nerve fibers were found be-
neath the surface of the spinal cord  (Fig.  7 

 b,c). These nerve fibers were myelinated 
by oligodendrocytes or Schwann cells (Fig. 
7e).  In addition, there were many un-

myelinated axons that were associated by 
Schwann cells (Fig. 7d) in the area near the 
spinal cord surface. This feature indicated 

processes of myelination of axons by Sch-
wann cells. Presumable arachnoidal cells in-
vaded into the lesion and surrounded myeli-
nated fibers (Fig. 7c) 

 Astrocytes were scanty. It appeared that 
astrocytes were more vulnerable to injury, 

and were easily lost from the lesion. 
There were no findings indicating astrocyte 

proliferation leading to glial scar in the 
border of the lesion.

Four-eight  weeks  after  cryoinjury

 Cavities of various sizes were formed in the 
epicenter to the rostral part of the lesion (Fig. 
8a). The cavity wall was composed of oligo-
dendrocytes and occasional astrocytic pro-
cesses. The so-called astrocytic scar was not 
necessarily formed in the wall of the cavity . 
Axons were also found in the cavity wall. 

 There was no cavity in the caudal part. 
Repairing tissues reacted to cryoinjury 
were found in the caudal part  (Fig.  8b). 

 Electron microscopy demonstrated that 
such repairing tissues contained astrocytes 
and some oligodendrocyte-myelinated nerve 
fibers  (Fig.  8c). Occasionally, some growth 
cones were found in such tissues (Fig. 8c). 
This suggested that spinal cord nerves retai-
ned their regenerative ability even after a 
long period following injury. 

 Remyelination on the surviving or regen-
erating axons appeared to have been com-

pleted. Thick myelin sheaths were formed 
on such axons by oligodendrocytes or Sch-
wann cells. Axons myelinated by Schwann 
cells were scattered among oligodendrocyte-
myelinated axons  (Fig.  8d). Myelin sheaths 
by Schwann cells were much thicker than 
those by oligodendrocytes. Collagen fibril 
deposition was not conspicuous around Sch-
wann cells. 

 In some places, astrocyte processes pro-
liferated to form local astrocytic scars. It
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Fig. 7 One to three weeks after cryoinjury 
(a) Three weeks after  cryoinjury.  A 
large cavity (asterisk) was formed in 
the rostral part of the lesion. Many 
macrophages (m) can be observed in 
the region between the cavity and pia 
mater (p). Scale bar:  20 m 
(b) This light micrograph shows the 
middle part of the lesion. The upper 
half of the dorsal column is affected. A 
cavity (asterisk) is formed, and macro-
phages are found within it. Some tis-
sue elements remain in the periphery of 
the cavity. A part (star) was enlarged 
in (c). Scale bar:  10 m 
(c) Enlargement of a part in (b). Many 

 myelinated fibers (asterisk) of apparent-
ly peripheral nerve-type are found 
beneath the pia mater (p). A cell layer 
(arrows) immediately beneath the pia 
mater is invading arachnoidal cells. 
Scale bar:  20 m 
(d) This electron micrograph shows the 
early stages of remyelination. An im-
mature Schwann cell  (S), covered by 
basal lamina (arrows), surrounds axons. 
Myelination probably by oligodendro-
cytes had begun on many axons (aster-
isks) 

(e) Myelination by ohgodendrocytes or 
Schwann cells occurred in the upper 
part near the pia mater. Schwann cells 

 (S) form thick myelin sheaths, while 
oligodendrocytes form thin myelin 
sheaths on the presumably  once-
demyelinated axons (A). Growth cone-
like axons (G) are found among these 
myelinated fibers. 
Scale bar: 1  m in (d), and (e)
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Fig. 8 Five to eight weeks after 
cryoinjury 
(a) Rostral part of the le-
sion. Cavities (asterisk) are 
formed, with macrophages 
(m) scattered within them. 
The invasion of arachnoid 
cells (arrow) can be noted 
beneath the pia mater 
(longitudinal section) 
(b) Caudal part of the le-
sion. The region affected by 
cryoinjury appears to have 
been repaired, containing 
some myelinated nerve 
fibers (longitudinal section). 
Scale  bar: 20  m in (a) and 
(b) 
(c) The repaired part of the 
lesion. A large growth cone 
(G) can be seen. An oligo-
dendrocyte  (0-1) is in con-
tact with this growth cone, 
and in association with 
myelinated axons (A) be-
side it. Another oligo-
dendrocyte  (0-2) is seen on 
the left of the picture. 
Astrocyte processes (As) 
fill the space between 
oligodendrocytes. Some 
myelinated fibers (M) are 
present between astrocyte 
processes 
(d) Nerve fibers myelinated 
by Schwann cells  (S). All 
nerve fibers (A) are myelin-
ated by Schwann cells. 
Schwann cells are covered 
by basal laminae. Myelin 
sheaths are thicker than 
those by oligodendrocytes 
(AO). Some astrocyte proc-
esses have extended be-
tween these Schwann cell-
myelinated fibers. 
Scale bar:  l m in (c) and (d)
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clear where such scars would be 

the tissue around the cavity.

Discussion

 The present study demonstrated that rig-
orous regenerating reactions occurred in the 
caudal part of the dorsal  funiculus in the 
cryoinjured spinal cord of the rat. In contrast, 
the tissues at the epicenter of the lesion were 
degraded, degenerated, and became necrotic, 
resulting in cavities of various sizes. Re-
generating axons and glial cells cannot invade 
the damaged tissue at the epicenter, resulting 
in the formation of a cavity as a necrotic space. 
The cavity formation prohibited the extension 
of regenerating axons up to the rostral part of 
the lesion.

 Axonal changes

 Many characteristic changes were observed 
in myelinated fibers following cryoinjury in 
the caudal part of the lesion. When they were 
completely destroyed by cryoinjury, axons 
underwent  Waller degeneration, and myelin 
sheaths were subsequently removed by 
macrophages. If axons survived while their 
associated oligodendrocytes were damaged, 
demyelination occurred. These demyelinated 
axons probably loose their function. It is 
conceivable that such demyelinated axons 
were remyelinated by oligodendrocytes, or 
occasionally by Schwann cells (Sasaki et al., 
1989; Sato et al., 1997). Axons can probably 
recover their original physiological function 
as impulse conductors when remyelinated. 
This phenomenon will greatly contribute to 
the functional recovery of animals after spinal 
cord injury. 

 Growth cones were formed in the caudal 

part of the injured spinal cord (Kitada et 
al., 1999). Such growth cones were found 
even 30 days after injury, suggesting that 
spinal cord nerves retain the ability to re-

generate a long time after injury. It was 
not clear whether growth cones, once for-
med, could extend for a certain distance in 
the lesion. It is probable that the growth 
cones could not extend over a long dis-
tance. This will be one of the most criti-
cal points to be addressed in future studies 
on spinal cord regeneration. The finding 
that growth cones extended along the pia 
mater basal lamina of the spinal cord sur-

face is interesting. It was not determined 

whether growth cones were derived from 

root fibers or from intrinsic spinal cord 

fibers. However, this suggests that even in 

the spinal cord, axons can extend over a 

long distance if they are provided with a 

suitable scaffold to grow along.

Myelin sheath and glial cells

 In the typical Waller degeneration, if axons 
were degenerated, oligodendrocytes separated 
myelin sheaths from the cytoplasm by some 
unknown mechanisms. Isolated myelin 
sheaths appeared to be degraded by autolysis 
or phagocytosed by macrophages. 

 If both axons and oligodendrocytes were 
destroyed by injury, myelin sheaths were 
disrupted into various forms of fragments, 
which were also finally removed by macro-

phages. In the case in which axons survi-
ved and the associated oligodendrocytes 
were degraded, myelin sheaths were dis-
integrated into varying types of lamellae, 
and removed by macrophages, resulting in 
the demyelination of axons. These axons 
were usually remyelinated by oligodendrocy-
tes. Although it is not known whether 
new oligodendrocytes are generated by mi-
tosis within the lesion, at least oligodendro-
cytes surviving after injury might contrib-
ute to the myelin formation on demyelina-
ted axons. 

 It is notable that astrocytes disappeared 
from the lesion. Astrocytes might be more 
vulnerable to cryoinjury than oligodendro-
cytes. It has been commonly believed that 
astrocytes remain to form networks after 
axons and oligodendrocytes are damaged. 
This is not the case. The lesion is usually 
devoid of astrocytes, containing surviving 
axons and associated oligodendrocytes. As 
far as we examined, astrocytic scar  forma-
tion was not common on the cavity wall. 
In the later stage, astrocytes extended their 
cytoplasmic processes, to fill in the spaces 
between nerve fibers and/or oligodendrocy-
tes. 
 The invasion of arachnoid tissue into the 

spinal cord, though restricted in its exten-
sion, might be an important problem. If 
the spinal cord receives an open injury 
such as transection, arachnoid cells invade 
extensively, and form a barrier to  the 

growth of axons. The reaction of the  spi-
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nal cord to the open injury is  fundamental-
ly different from closed injury. In closed 
injury, like the  cryoinjury in the present 
study, external cell invasion including  fibro-
blasts and arachnoidal cells is minimal. In-
vasion by fibroblasts or arachnoidal cells 
from the outside leads to astrocytic scar for-
mation. Astrocytes proliferate and form a 
barrier of basal laminae at the border  fac-
ing non-spinal cord tissues such as fibrobl-
asts or arachnoidal cells. Accordingly, the 
condition for regeneration is markedly dif-
ferent between the open- and close-injured 
spinal cord. In the present cryoinjury, 
albeit the injury was a closed one, a small 
amount of arachnoid cells invaded through 
locally disrupted basal laminae, or through 
the root entry space after the root had 
been degenerated.

cord regeneration

 From the standpoint of spinal cord regene-
ration, the survival of axons after demyeli-
nation is regarded as a structural basis for the 

functional recovery of animals following 
spinal cord injury. As stated above, axons that 
had been demyelinated seem to be again 
myelinated by oligodendrocytes or Schwann 
cells. It is conceivable that remyelinated 

axons can recover their impulse conduction 
function. In this respect, the conservation of 
axons and glial cells in the early injury stages 
might be critical for achieving functional 
recovery in spinal cord regeneration. Axons 

and glial cells should be rescued from 
degeneration, e. g., by growth factors (Ohta et 
al., 2004; Scharma, 2007; Wright et al., 2007; 
Ohtaki et al., 2008), in the early stage of injury, 

to achieve the functional recovery of the 
animal. 
 The presence of growth cones is a posi-

tive sign of nerve regeneration. The fact 
that growth cones are formed even 30 

days after injury suggests that spinal cord 
nerve fibers retain their regenerative abili-
ty for a long time after injury. This leads 
to the consideration that spinal cord regen-
eration might be realized even in the chron-

ic condition if some appropriate techniques 
can be applied for the extension of growth 
cones. Growth cones need scaffolds to 

grow along, as in the case of peripheral 
nerve regeneration (Ide et al., 1983). If 

some suitable scaffolds as basal laminae in
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the peripheral nerve can be provided, nerve 
regeneration is more likely in the spinal 
cord. 
 The biggest hindrance to spinal cord re-

generation might be cavity formation. No 
tissue components invade or survive in 
such cavities. Many attempts have so far 
been made to fill in these cavities with tra-
nsplant materials effective for nerve out-

growth, including various kinds of cells or 
artificial substances (Kataoka et al., 2004). 
We think that the blood supply is the 
most critical factor in cavity formation. 
Blood vessels are destroyed by injury. Ap-

parently no blood vessel formation occurs 
in the spinal cord lesion. This is a funda-
mental difference from peripheral nerve 
injury. In the peripheral nerves, blood  ves-
sels regenerate extensively through the en-
doneurial connective tissue. On the other 
hand, there is no connective tissue compo-
nent such as collagen fibrils and basal  lam-
inae in the spinal cord. Unlike in the case 
of peripheral nerves, basal laminae of blood 
vessels did not survive, but disappeared 
when blood vessels were destroyed in the 
spinal cord. This means that there is no 
scaffold for blood vessel formation in the 
spinal cord. This fact might be a major 
factor in cavity formation in the spinal 
cord. 
 We should keep in mind that simple cell 
transplantation might not be effective for 
spinal cord regeneration. An appropriate en-
vironment should be provided to keep the 
transplants alive and/or promote blood 
vessel invasion into the lesion. In this re-
spect, any kind of scaffold or supporting 
material can be studied along with the cell 
transplantation. The fate of transplanted 
cells and histological changes should be ex-
amined precisely.
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