30 research outputs found

    Structure of l-rhamnose isomerase in complex with l-rhamnopyranose demonstrates the sugar-ring opening mechanism and the role of a substrate sub-binding site

    Get PDF
    Abstractl-Rhamnose isomerase (l-RhI) catalyzes the reversible isomerization of l-rhamnose to l-rhamnulose. Previously determined X-ray structures of l-RhI showed a hydride-shift mechanism for the isomerization of substrates in a linear form, but the mechanism for opening of the sugar-ring is still unclear. To elucidate this mechanism, we determined X-ray structures of a mutant l-RhI in complex with l-rhamnopyranose and d-allopyranose. Results suggest that a catalytic water molecule, which acts as an acid/base catalyst in the isomerization reaction, is likely to be involved in pyranose-ring opening, and that a newly found substrate sub-binding site in the vicinity of the catalytic site may recognize different anomers of substrates

    6-De­oxy-α-l-talopyran­ose

    Get PDF
    X-ray crystallography showed that the title compound, C6H12O5, crystallizes in the α-pyran­ose form with the six-membered ring in a chair conformation. The crystal structure exists as a three-dimensional hydrogen-bonded network of mol­ecules with each mol­ecule acting as a donor and aceptor for four hydrogen bonds. The absolute configuration was determined by the use of l-fucose as starting material

    1-De­oxy-d-galactitol (l-fucitol)

    Get PDF
    1-De­oxy-d-galactitol, C6H14O5, exists in the crystalline form as hydrogen-bonded layers of mol­ecules running parallel to the ac plane, with each mol­ecule acting as a donor and acceptor of five hydrogen bonds

    6-Deoxyhexoses froml-Rhamnose in the Search for Inducers of the Rhamnose Operon: Synergy of Chemistry and Biotechnology

    Get PDF
    In the search for alternative non‐metabolizable inducers in the l ‐rhamnose promoter system, the synthesis of fifteen 6‐deoxyhexoses from l ‐rhamnose demonstrates the value of synergy between biotechnology and chemistry. The readily available 2,3‐acetonide of rhamnonolactone allows inversion of configuration at C4 and/or C5 of rhamnose to give 6‐deoxy‐d ‐allose, 6‐deoxy‐d ‐gulose and 6‐deoxy‐l ‐talose. Highly crystalline 3,5‐benzylidene rhamnonolactone gives easy access to l ‐quinovose (6‐deoxy‐l ‐glucose), l ‐olivose and rhamnose analogue with C2 azido, amino and acetamido substituents. Electrophilic fluorination of rhamnal gives a mixture of 2‐deoxy‐2‐fluoro‐l ‐rhamnose and 2‐deoxy‐2‐fluoro‐l ‐quinovose. Biotechnology provides access to 6‐deoxy‐l ‐altrose and 1‐deoxy‐l ‐fructose

    Synthetic Chemical Inducers and Genetic Decoupling Enable Orthogonal Control of the rhaBAD Promoter

    Get PDF
    External control of gene expression is crucial in synthetic biology and biotechnology research and applications, and is commonly achieved using inducible promoter systems. The E. coli rhamnose-inducible rhaBAD promoter has properties superior to more commonly used inducible expression systems, but is marred by transient expression caused by degradation of the native inducer, l-rhamnose. To address this problem, 35 analogues of l-rhamnose were screened for induction of the rhaBAD promoter, but no strong inducers were identified. In the native configuration, an inducer must bind and activate two transcriptional activators, RhaR and RhaS. Therefore, the expression system was reconfigured to decouple the rhaBAD promoter from the native rhaSR regulatory cascade so that candidate inducers need only activate the terminal transcription factor RhaS. Rescreening the 35 compounds using the modified rhaBAD expression system revealed several promising inducers. These were characterized further to determine the strength, kinetics, and concentration-dependence of induction; whether the inducer was used as a carbon source by E. coli; and the modality (distribution) of induction among populations of cells. l-Mannose was found to be the most useful orthogonal inducer, providing an even greater range of induction than the native inducer l-rhamnose, and crucially, allowing sustained induction instead of transient induction. These findings address the key limitation of the rhaBAD expression system and suggest it may now be the most suitable system for many applications

    Hanessian-Hullar reaction in the synthesis of highly substituted trans-3,4-dihydroxypyrrolidines: Rhamnulose iminosugar mimics inhibit α-glucosidase

    Get PDF
    The key step in the syntheses of highly substituted trans-3,4-dihydroxypyrrolidines is introduction of bromide by stereospecific and regiospecific Hanessian-Hullar reactions; benzylidene lactones of l-rhamnonolactone and 6-deoxy-l-gulonolactone allow introduction of N at C2 with inversion or retention of configuration. Initially a protecting group, the benzylidene acetal then provides a bromide at C5 to allow formation of the pyrrolidine ring. With silyl protecting groups, bromide was introduced at C5 with inversion of configuration whereas benzoyl protection gave a mixture of retention and inversion, indicative of neighbouring group participation in a Hanessian-Hullar reaction. Four stereoisomeric pyrrolidines - iminosugar mimics of α- and β-l-rhamnulose and α- and β-6-deoxy-d-sorbose were prepared. Only the α-l-rhamnulose mimic showed moderate inhibition of rhamnosidase but some were good inhibitors of α-glucosidases; none inhibited rhamnose isomerase and they had a small effect as synthetic inducers of the rhamnose catabolic operon in E. coli

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    α-D,l-Sorbose

    No full text
    The racemic title compound, C6H12O6, consisting of C-4 epimers of psicose, was crystallized from an aqueous solution of an equimolar mixture of d- and l-sorboses. It was confirmed that d-sorbose (or l-sorbose) formed α-pyranose with a 4C1 (or 1C4) conformation where the anomer position was designated as carbon-1. The asymmetric unit comprises two crystallographically independent molecules. In the crystal, molecules are linked by O—H...O hydrogen bonds, forming a three-dimensional framework. The unit-cell volume of the title racemic α-d,l-sorbose is 1450.86 (6) Å3 (Z = 8), which is about 41 Å3 smaller than that of twice the amount of chiral α-l-sorbose [V = 745.942 Å3 (Z = 4)]
    corecore