2 research outputs found

    From chemical gardens to chemobrionics

    Get PDF
    Chemical gardens are perhaps the best example in chemistry of a self-organizing nonequilibrium process that creates complex structures. Many different chemical systems and materials can form these self-assembling structures, which span at least 8 orders of magnitude in size, from nanometers to meters. Key to this marvel is the self-propagation under fluid advection of reaction zones forming semipermeable precipitation membranes that maintain steep concentration gradients, with osmosis and buoyancy as the driving forces for fluid flow. Chemical gardens have been studied from the alchemists onward, but now in the 21st century we are beginning to understand how they can lead us to a new domain of self-organized structures of semipermeable membranes and amorphous as well as polycrystalline solids produced at the interface of chemistry, fluid dynamics, and materials science. We propose to call this emerging field chemobrionics

    Magnetic Field Effects on Copper Metal Deposition from Copper Sulfate Aqueous Solution

    No full text
    Effects of a magnetic field (≤0.5 T) on electroless copper metal deposition from the reaction of a copper sulfate aqueous solution and a zinc thin plate were examined in this study. In a zero field, a smooth copper thin film grew steadily on the plate. In a 0.38 T field, a smooth copper thin film deposited on a zinc plate within about 1 min. Then, it peeled off repeatedly from the plate. The yield of consumed copper ions increased about 2.1 times compared with that in a zero field. Mechanism of this magnetic field effect was discussed in terms of Lorentz force- and magnetic force-induced convection and local volta cell formation
    corecore