14 research outputs found

    Comparative Study of Regulatory T Cell Function of Human CD25+CD4+ T Cells from Thymocytes, Cord Blood, and Adult Peripheral Blood

    Get PDF
    CD25+CD4+ regulatory T cells suppress T cell activation and regulate multiple immune reactions in in vitro and in vivo studies. To define the regulatory function of human CD25+CD4+ T cells at various stages of maturity, we investigated in detail the functional differences of CD25+CD4+ T cells from thymocytes, cord blood (CB), and adult peripheral blood (APB). CB CD25+CD4+ T cells displayed low-FOXP3 protein expression level and had no suppressive activity. In contrast, CD25+CD4+ T cells from thymocytes or APB expressed high expression level of FOXP3 protein associated with significant suppressive activity. Although CB CD25+CD4+ T cells exhibited no suppressive activity, striking suppressive activity was observed following expansion in culture associated with increased FOXP3 expression and a shift from the CD45RA+ to the CD45RA− phenotype. These functional differences in CD25+CD4+ T cells from Thy, CB, and APB hence suggest a pathway of maturation for Treg in the peripheral immune system

    地震発生帯における深部掘削孔を用いた長期計測

    Get PDF
    Large earthquakes occur frequently in subduction zones. Most earthquakes are generated in the seismogenic zone, a fairly limited area confined to the shallower regions of the subduction plate boundary. To understand the processes of earthquake generation, it is essential to monitor the physical and mechanical properties of the seismogenic zone over long periods. At present, there are no deep borehole observations of the seismogenic zone more than 3km below seafloor, because it has, until now, been impossible to penetrate to such depths below the sea floor. The Integrated Ocean Drilling Program (IODP), scheduled to begin in 2003, plans to drill boreholes beneath the ocean floor using a multiple-drilling platform operation. The IODP riser-quipped drilling ship (Chikyu) enables the emplacement of boreholes up to 0km beneath the ocean floor, and will provide opportunities to conduct long-term deep borehole observations in the seismogenic zone. Long-term borehole observations in the seismogenic zone are expected to require the development of advanced sampling, monitoring, and recording technology. Here, we discuss the scientific objectives, engineering and technical challenges, and experimental design for a deep borehole, long-term deepborehole monitoring system aimed at understanding the processes of earthquake generation in the seismogenic zone of subduction plate boundaries. We focus specifically on the relationships between environmental conditions in the deep subsurface, details of monitoring and recording, and design and implementation of scientific tools and programs

    Segmental arterial mediolysis with a ruptured visceral artery on two consecutive days

    No full text
    Abstract Background We describe a case of segmental arterial mediolysis in which a vessel ruptured on two consecutive days. Case Presentation A 69‐year‐old man presented with sudden‐onset abdominal pain. Computed tomography showed a hematoma in the gastric wall. The patient was discharged after the pain was relieved but returned 8 h later with abdominal pain and shock. Repeated computed tomography revealed a massive intra‐abdominal hemorrhage without previous aneurysm formation. Emergency angiography and coil embolization were successfully carried out. Segmental arterial mediolysis was diagnosed after irregular vasodilated lesions were observed in multiple arteries. Conclusion This case suggests that accurately predicting the next vessel rupture is difficult. For patients experiencing intra‐abdominal bleeding with segmental arterial mediolysis, we suggest treating only ruptured aneurysms and closely following‐up unruptured aneurysms
    corecore