7,319 research outputs found
Apollo experience report the command and service module milestone review process
The sequence of the command and service module milestone review process is given, and the Customer Acceptance Readiness Review and Flight Readiness Review plans are presented. Contents of the System Summary Acceptance Documents for the two formal spacecraft reviews are detailed, and supplemental data required for presentation to the review boards are listed. Typical forms, correspondence, supporting documentation, and minutes of a board meeting are included
Conformal ``thin sandwich'' data for the initial-value problem of general relativity
The initial-value problem is posed by giving a conformal three-metric on each
of two nearby spacelike hypersurfaces, their proper-time separation up to a
multiplier to be determined, and the mean (extrinsic) curvature of one slice.
The resulting equations have the {\it same} elliptic form as does the
one-hypersurface formulation. The metrical roots of this form are revealed by a
conformal ``thin sandwich'' viewpoint coupled with the transformation
properties of the lapse function.Comment: 7 pages, RevTe
A Liquid Model Analogue for Black Hole Thermodynamics
We are able to characterize a 2--dimensional classical fluid sharing some of
the same thermodynamic state functions as the Schwarzschild black hole. This
phenomenological correspondence between black holes and fluids is established
by means of the model liquid's pair-correlation function and the two-body
atomic interaction potential. These latter two functions are calculated exactly
in terms of the black hole internal (quasilocal) energy and the isothermal
compressibility. We find the existence of a ``screening" like effect for the
components of the liquid.Comment: 20 pages and 6 Encapsulated PostScript figure
Numerical method for binary black hole/neutron star initial data: Code test
A new numerical method to construct binary black hole/neutron star initial
data is presented. The method uses three spherical coordinate patches; Two of
these are centered at the binary compact objects and cover a neighborhood of
each object; the third patch extends to the asymptotic region. As in the
Komatsu-Eriguchi-Hachisu method, nonlinear elliptic field equations are
decomposed into a flat space Laplacian and a remaining nonlinear expression
that serves in each iteration as an effective source. The equations are solved
iteratively, integrating a Green's function against the effective source at
each iteration. Detailed convergence tests for the essential part of the code
are performed for a few types of selected Green's functions to treat different
boundary conditions. Numerical computation of the gravitational potential of a
fluid source, and a toy model for a binary black hole field are carefully
calibrated with the analytic solutions to examine accuracy and convergence of
the new code. As an example of the application of the code, an initial data set
for binary black holes in the Isenberg-Wilson-Mathews formulation is presented,
in which the apparent horizons are located using a method described in Appendix
A.Comment: 19 pages, 18 figure
First-order symmetrizable hyperbolic formulations of Einstein's equations including lapse and shift as dynamical fields
First-order hyperbolic systems are promising as a basis for numerical
integration of Einstein's equations. In previous work, the lapse and shift have
typically not been considered part of the hyperbolic system and have been
prescribed independently. This can be expensive computationally, especially if
the prescription involves solving elliptic equations. Therefore, including the
lapse and shift in the hyperbolic system could be advantageous for numerical
work. In this paper, two first-order symmetrizable hyperbolic systems are
presented that include the lapse and shift as dynamical fields and have only
physical characteristic speeds.Comment: 11 page
Kerr-Schild type initial data for black holes with angular momenta
Generalizing previous work we propose how to superpose spinning black holes
in a Kerr-Schild initial slice. This superposition satisfies several physically
meaningful limits, including the close and the far ones. Further we consider
the close limit of two black holes with opposite angular momenta and explicitly
solve the constraint equations in this case. Evolving the resulting initial
data with a linear code, we compute the radiated energy as a function of the
masses and the angular momenta of the black holes.Comment: 13 pages, 3 figures. Revised version. To appear in Classical and
Quantum Gravit
Hamiltonian Time Evolution for General Relativity
Hamiltonian time evolution in terms of an explicit parameter time is derived
for general relativity, even when the constraints are not satisfied, from the
Arnowitt-Deser-Misner-Teitelboim-Ashtekar action in which the slicing density
is freely specified while the lapse is not.
The constraint ``algebra'' becomes a well-posed evolution system for the
constraints; this system is the twice-contracted Bianchi identity when
. The Hamiltonian constraint is an initial value constraint which
determines and hence , given .Comment: 4 pages, revtex, to appear in Phys. Rev. Let
Keep off the grass: Using herbivore exclusion cages to understand herbivory in seagrass meadows
Seagrasses provide important habitat that delivers ecosystem services and provides food to a wide diversity of herbivores globally. In the Great Barrier Reef (GBR) we find the full size spectrum of herbivores; from small mesograzers such as amphipods, to macrograzers such as fish and large megagrazers such as turtles and dugongs. These herbivores can structurally alter seagrass beds in either positive or negative ways depending on their size, feeding preferences and methods and grazing intensity. These structural changes can subsequently interact with the delivery of other ecosystem services, or the benefits to humans, provided by the seagrass meadow. In the tropics, we know little about the impact of herbivores and how different groups interact to structure seagrass meadows, despite the number and variety of herbivores present in tropical seagrass habitats. We carried out exclusion experiments that targeted each herbivore group individually and in combination in subtidal and intertidal seagrass meadows in Queensland, Australia to understand the role of herbivores in structuring meadows and the interaction between herbivore groups. Our results show different feeding strategies of herbivores in each habitat, especially megaherbivores, and these impact the meadow in different ways. The effects on biomass, shoot density and shoot height depended on the type of grazing observed. All herbivore groups acted to structure the seagrass and interacted to influence overall meadow properties. Grazer mediated changes in meadow structure will have important implications for the ecosystem services delivered by tropical seagrass ecosystems
Exclusion studies reveal the interactions between herbivores in structuring seagrass meadows their ecosystem services and the implications for effective management
Seagrasses provide important habitat that delivers ecosystem services and provides food to a wide diversity of herbivores globally. In the Great Barrier Reef we find large seagrass meadows that are grazed on by a diverse herbivore community. This presents a challenge for managers trying to conserve herbivores, the habitats they rely on and maintain ecosystem service delivery in coastal ecosystems. Herbivore communities can structurally alter seagrass meadows in positive or negative ways depending on their size, feeding methods and grazing intensity. These structural changes can alter the ecosystem services provided by the seagrass meadow. We carried out exclusion experiments targeting each herbivore group individually and in combination in subtidal and intertidal seagrass meadows in Queensland, to understand how herbivores can structure meadows and the interactions between herbivore groups. Our results show different feeding strategies of herbivores in each habitat, especially megaherbivores, which impact the meadow in different ways. The effects on biomass, shoot density and shoot height depended on the type of grazing observed. Grazer mediated changes in meadow structure will have important implications for the ecosystem services delivered by tropical seagrass ecosystems and the management of these ecosystems, including incorporating grazing dynamics into monitoring projects
Exclusion studies reveal the interactions between herbivores in structuring seagrass meadows
Seagrasses provide important habitat that delivers ecosystem services and provides food to a wide diversity of herbivores globally. In the Great Barrier Reef we find large seagrass meadows that are grazed on by a diverse herbivore community. This presents a challenge for managers trying to conserve herbivores, the habitats they rely on and maintain ecosystem service delivery in coastal ecosystems. Herbivore communities can structurally alter seagrass meadows in positive or negative ways depending on their size, feeding methods and grazing intensity. These structural changes can alter the ecosystem services provided by the seagrass meadow. We carried out exclusion experiments targeting each herbivore group individually and in combination in subtidal and intertidal seagrass meadows in Queensland, Australia to understand how herbivores can structure meadows and the interactions between herbivore groups. Our results show different feeding strategies of herbivores in each habitat, especially megaherbivores, which impact the meadow in different ways. The effects on biomass, shoot density and shoot height depended on the type of grazing observed. Grazer mediated changes in meadow structure will have important implications for the ecosystem services delivered by tropical seagrass ecosystems and the management of these ecosystems, including incorporating grazing dynamics into monitoring projects
- …