2 research outputs found
Effect of visual feedback on the occipital-parietal-motor network in Parkinson's disease with freezing of gait.
Freezing of gait (FOG) is an elusive phenomenon that debilitates a large number of Parkinson's disease (PD) patients regardless of stage of disease, medication status, or deep brain stimulation implantation. Sensory feedback cues, especially visual feedback cues, have been shown to alleviate FOG episodes or even prevent episodes from occurring. Here, we examine cortical information flow between occipital, parietal, and motor areas during the pre-movement stage of gait in a PD-with-FOG patient that had a strong positive behavioral response to visual cues, one PD-with-FOG patient without any behavioral response to visual cues, and age-matched healthy controls, before and after training with visual feedback. Results for this case study show differences in cortical information flow between the responding PD-with-FOG patient and the other two subject types, notably, an increased information flow in the beta range. Tentatively suggesting the formation of an alternative cortical sensory-motor pathway during training with visual feedback, these results are proposed as subject for further verification employing larger cohorts of patients
Virtual sensory feedback for gait improvement in neurological patients
We review a treatment modality for movement disorders by sensory feedback. The natural closed-loop sensory-motor feedback system is imitated by a wearable virtual reality apparatus, employing body-mounted inertial sensors and responding dynamically to the patientâs own motion. Clinical trials have shown a significant gait improvement in patients with Parkinson's disease using the apparatus. In contrast to open-loop devices, which impose constant-velocity visual cues in a treadmill fashion, or rhythmic auditory cues in a metronome fashion, requiring constant vigilance and attention strategies, and in some cases, instigating freezing in Parkinsonâs patients, the closed-loop device improved gait parameters and eliminated freezing in most patients, without side effects. Patients with multiple sclerosis, previous stroke, senile gait and cerebral palsy using the device also improved their balance and gait substantially. Training with the device has produced a residual improvement, suggesting virtual sensory feedback for the treatment of neurological movement disorders