3 research outputs found

    Induced Infiltration of Hole-Transporting Polymer into Photocatalyst for Staunch Polymer–Metal Oxide Hybrid Solar Cells

    No full text
    For efficient solar cells based on organic semiconductors, a good mixture of photoactive materials in the bulk heterojunction on the length scale of several tens of nanometers is an important requirement to prevent exciton recombination. Herein, we demonstrate that nanoporous titanium dioxide inverse opal structures fabricated using a self-assembled monolayer method and with enhanced infiltration of electron-donating polymers is an efficient electron-extracting layer, which enhances the photovoltaic performance. A calcination process generates an inverse opal structure of titanium dioxide (<70 nm of pore diameters) providing three-dimensional (3D) electron transport pathways. Hole-transporting polymers was successfully infiltrated into the pores of the surface-modified titanium dioxide under vacuum conditions at 200 °C. The resulting geometry expands the interfacial area between hole- and electron-transport materials, increasing the thickness of the active layer. The controlled polymer-coating process over titanium dioxide materials enhanced photocurrent of the solar cell device. Density functional theory calculations show improved interfacial adhesion between the self-assembled monolayer-modified surface and polymer molecules, supporting the experimental result of enhanced polymer infiltration into the voids. These results suggest that the 3D inverse opal structure of the surface-modified titanium dioxide can serve as a favorable electron-extracting layer in further enhancing optoelectronic performance based on organic or organic–inorganic hybrid solar cell

    Enhanced Electrochemical Stability of a Zwitterionic-Polymer-Functionalized Electrode for Capacitive Deionization

    No full text
    In capacitive deionization, the salt-adsorption capacity of the electrode is critical for the efficient softening of brackish water. To improve the water-deionization capacity, the carbon electrode surface is modified with ion-exchange resins. Herein, we introduce the encapsulation of zwitterionic polymers over activated carbon to provide a resistant barrier that stabilizes the structure of electrode during electrochemical performance and enhances the capacitive deionization efficiency. Compared to conventional activated carbon, the surface-modified activated carbon exhibits significantly enhanced capacitive deionization, with a salt adsorption capacity of ∼2.0 × 10<sup>–4</sup> mg/mL and a minimum conductivity of ∼43 μS/cm in the alkali-metal ions solution. Encapsulating the activated-carbon surface increased the number of ions adsorption sites and the surface area of the electrode, which improved the charge separation and deionization efficiency. In addition, the coating layer suppresses side reactions between the electrode and electrolyte, thus providing a stable cyclability. Our experimental findings suggest that the well-distributed coating layer leads to a synergistic effect on the enhanced electrochemical performance. In addition, density functional theory calculation reveals that a favorable binding affinity exists between the alkali-metal ion and zwitterionic polymer, which supports the preferable salt ions adsorption on the coating layer. The results provide useful information for designing more efficient capacitive-deionization electrodes that require high electrochemical stability

    Dendrite-Free Lithium Deposition for Lithium Metal Anodes with Interconnected Microsphere Protection

    No full text
    A lithium (Li) metal anode is required to achieve a high-energy-density battery, but because of an undesirable growth of Li dendrites, it still has safety and cyclability issues. In this study, we have developed a microsphere-protected (MSP) Li metal anode to suppress the growth of Li dendrites. Microspheres could guide Li ions to selective areas and pressurize dendrites during their growth. Interconnections between microspheres improved the pressurization. By using an MSP Li metal anode in a 200 mAh pouch-type Li/NCA full cell at 4.2 V, dendrite-free Li deposits with a density of 0.4 g/cm<sup>3</sup>, which is 3 times greater than that in the case of bare Li metal, were obtained after charging at 2.9 mAh/cm<sup>2</sup>. The MSP Li metal enhanced the cyclability to 190 cycles with a criterion of 90% capacity retention of the initial discharge capacity at a current density of 1.45 mA/cm<sup>2</sup>
    corecore