22 research outputs found

    Comparison between Occlusal Errors of Single Posterior Crowns Adjusted Using Patient Specific Motion or Conventional Methods

    Get PDF
    Recently, digital technology has been used in dentistry to enhance accuracy and to reduce operative time. Due to advances in digital technology, the integration of individual mandibular motion into the mapping of the occlusal surface is being attempted. The Patient Specific Motion (PSM) is one such method. However, it is not clear whether the occlusal design that is adjusted using PSM could clinically show reduced occlusal error compared to conventional methods based on static occlusion. In this clinical comparative study including fifteen patients with a single posterior zirconia crown treatment, the occlusal surface after a clinical adjustment was compared to no adjustment (NA; design based on static occlusion), PSM (adjusted using PSM), and adjustment using a semi-adjustable articulator (SA) for the assessment of occlusal error. The root mean square (RMS; mu m), average deviation value (+/- AVG; mu m), and proportion inside the tolerance (in Tol; %) were calculated using the entire, subdivided occlusal surface and the out of tolerance area. Using a one-way ANOVA, the RMS and +AVG from the out of tolerance area showed a statistical difference between PSM (202.3 +/- 39.8 for RMS, 173.1 +/- 31.3 for +AVG) and NA (257.0 +/- 73.9 for RMS, 210.9 +/- 48.6 for +AVG). For the entire and subdivided occlusal surfaces, there were no significant differences. In the color-coded map analysis, PSM demonstrated a reduced occlusal error compared to NA. In conclusion, adjustment occlusal design using PSM is a simple and effective method for reducing occlusal errors that are difficult to identify in a current computer-aided design (CAD) workflow with static occlusion.11Nsciescopu

    Effect of Low-Concentration Hydrofluoric Acid Etching on Shear Bond Strength and Biaxial Flexural Strength after Thermocycling

    No full text
    This study evaluated the shear bond strength (SBS) and biaxial flexural strength (BFS) of resin cements according to the surface treatment method using low-temperature hot etching with hydrofluoric acid (HF) on a yttrium-stabilized tetragonal zirconia (Y-TZP) surface; 96 discs and 72 cubes for BFS and SBS tests for Y-TZP were randomly divided into four groups of BFS and three groups of SBS. Specimens were subjected to the following surface treatments: (1) no treatment (C), (2) air abrasion with 50 μm Al2O3 particles (A), (3) hot etching with HF at 100 °C for 10 min (E), and (4) air abrasion + hot etching (AE). After treatments, the specimens were coated with primer, and resin cement was applied with molds. The specimens were evaluated for roughness (Ra) via scanning electron microscopy and x-ray diffraction, and the data were analyzed by an analysis of variance (ANOVA) and Kruskal–Wallis tests. Group E produced significantly higher SBS compared to group A and AE before and after thermocycling. The BFSs of all groups showed no significant differences before thermocycling; however, after thermocycling, C and E treatment groups were significantly higher compared to group A and AE. All groups showed phase transformation. Group E was observed lower monoclinic phase transformation compared to other groups

    Randomized clinical trial of pulpotomy using a premixed injectable calcium silicate cement on mature permanent teeth with reversible pulpitis

    No full text
    Abstract The aim of this two-center randomized controlled trial was to assess the outcomes and relative factors associated with pulpotomies performed using a premixed injectable calcium silicate cement, as compared to mineral trioxide aggregate in mature permanent premolar and molar teeth with reversible pulpitis. Included teeth were randomly divided into two groups according to pulpotomy material (ProRoot MTA [PMTA] group, Endocem MTA Premixed [EPM] group). After pulp exposure, the superficial pulp was either removed to a depth of 2 mm (partial pulpotomy) or completely amputated to the level of the root canal orifice (full pulpotomy). A 3-mm layer of either material was randomly placed over the pulp wound, followed by the application of a thin layer of a light-cured glass ionomer composite liner. The restoration procedure was then carried out during the same visit. After one year of treatment, the pulpotomy success rate was 94.4% (67/71), with no significant difference between the PMTA and EPM groups. The success rate was 93.9% in the PMTA group and 97.1% in the EPM group. There were no significant factors related to the procedures. EPM is a viable alternative to PMTA for single-visit pulpotomies of permanent premolars and molars

    A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength

    No full text
    Objectives This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. Materials and Methods 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Results Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S3 Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Conclusions Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations

    The Role of Hydraulic Silicate Cements on Long-Term Properties and Biocompatibility of Partial Pulpotomy in Permanent Teeth

    No full text
    The use of hydraulic silicate cements (HSCs) for vital pulp therapy has been found to release calcium and hydroxyl ions promoting pulp tissue healing and mineralized tissue formation. The present study investigated whether HSCs such as mineral trioxide aggregate (MTA) affect their biological and antimicrobial properties when used as long-term pulp protection materials. The effect of variables on treatment outcomes of three HSCs (ProRoot MTA, OrthoMTA, and RetroMTA) was evaluated clinically and radiographically over a 48&ndash;78 month follow-up period. Survival analysis was performed using Kaplan&ndash;Meier survival curves. Fisher&rsquo;s exact test and Cox regression analysis were used to determine hazard ratios of clinical variables. The overall success rate of MTA partial pulpotomy was 89.3%; Cumulative success rates of the three HSCs were not statistically different when analyzed by Cox proportional hazard regression analysis. None of the investigated clinical variables affected success rates significantly. These HSCs showed favorable biocompatibility and antimicrobial properties in partial pulpotomy of permanent teeth in long-term follow-up, with no statistical differences between clinical factors

    Low-intensity pulsed ultrasound attenuates replacement root resorption of avulsed teeth stored in dry condition in dogs

    No full text
    Abstract This study aimed to investigate the effects of low-intensity pulsed ultrasound (LIPUS) on replacement root resorption after replantation of avulsed teeth stored in a dry condition in dogs. A total of 73 premolar roots from four male mongrel dogs were intentionally avulsed with forceps and divided into four groups—HN, HL, DN, and DL—according to storage conditions and whether or not they received LIPUS treatment. Thirty-eight roots were kept in Hanks’ Balanced Salt Solution for 30 min (HN and HL groups), whereas the remaining 35 roots were left to dry in the air for an hour (DN and DL groups) prior to replantation. Following replantation, the roots in the HL and DL groups (21 and 18 roots, respectively) received a 20-min daily LIPUS treatment for 2 weeks. The animals were euthanized 4 weeks after the operation. Micro-computed tomography images were acquired for each root and the amount of replacement root resorption was measured three-dimensionally. Histological assessments were also carried out. There was significantly less replacement root resorption for the roots in the DL group compared to the DN group (p < 0.01). Histological findings in the DN group demonstrated evident replacement root resorption, whereas the DL group revealed less severe resorption compared to the DN group. Within the limitations, these results suggest that LIPUS could attenuate the replacement resorption of avulsed teeth stored in a dry condition, thereby improving their prognosis

    Comparison of Self-Etching Ceramic Primer and Conventional Silanization to Bond Strength in Cementation of Fiber Reinforced Composite Post

    No full text
    Various mechanical and chemical surface treatments have been proposed to improve the retention of fiber-reinforced composite post (FRCP), but the results are still controversial. The bond strength and durability of a self-etching ceramic primer, which was recently released as an alternative to etching and silane, are not yet known. This study aimed to compare and evaluate the push-out bond strength of different surface treatments of FRCPs after an artificial aging procedure. Four groups (n = 10) were established to evaluated FRCP surface treatments (dentin adhesive bonding; silane and adhesive bonding; hydrofluoric acid, silane and adhesive bonding; and a self-etching ceramic primer). They were bonded with dual-curing rein cement (Multilink N) and stored in distilled water at 37 &#176;C for 30 days, then thermal cycled for 7500 cycles. After being sectioned into 1 mm thickness, each coronal and apical part was evaluated for its the push-out bond strength by a universal testing machine. Each debonded specimen was observed by an optical microscope and divided according to the failure modes. The results showed that silane treatment significantly improved push-out bond strength, but the self-etching ceramic primer did not do so. Additional hydrofluoric acid treatment or the adhesive bonding agent alone did not significantly improve the retention of FRCPs. Cohesive failure of the luting material was found most frequently in all groups

    Effect of Curing Mode on Shear Bond Strength of Self-Adhesive Cement to Composite Blocks

    No full text
    To overcome the disadvantages of computer-aided design/computer-aided manufacturing (CAD/CAM) processed indirect restorations using glass-ceramics and other ceramics, resin nano ceramic, which has high strength and wear resistance with improved polish retention and optical properties, was introduced. The purpose of this study was to evaluate the shear bond strength and fracture pattern of indirect CAD/CAM composite blocks cemented with two self-etch adhesive cements with different curing modes. Sand-blasted CAD/CAM composite blocks were cemented using conventional resin cement, Rely X Ultimate Clicker (RXC, 3M ESPE, St. Paul, MN, USA) with Single Bond Universal (SB, 3M ESPE, St. Paul, MN, USA) for the control group or two self-adhesive resin cements: Rely X U200 (RXU, 3M ESPE, St. Paul, MN, USA) and G-CEM Cerasmart (GC, GC corporation, Tokyo, Japan). RXU and GC groups included different curing modes (light-curing (L) and auto-curing (A)). Shear bond strength (SBS) analyses were performed on all the specimens. The RXC group revealed the highest SBS and the GC A group revealed the lowest SBS. According to Tukey’s post hoc test, the RXC group showed a significant difference compared to the GC A group (p &lt; 0.05). For the curing mode, RXU A and RXU L did not show any significant difference between groups and GC A and GC L did not show any significant difference either. Most of the groups except RXC and RXU L revealed adhesive failure patterns predominantly. The RXC group showed a predominant cohesive failure pattern in their CAD/CAM composite, LavaTM Ultimate (LU, 3M ESPE, St. Paul, MN, USA). Within the limitations of this study, no significant difference was found regarding curing modes but more mixed fracture patterns were showed when using the light-curing mode than when using the self-curing mode

    Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    No full text
    Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3) specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3
    corecore