6,415 research outputs found

    The Effect of Touch Simulation in Virtual Reality Shopping

    Get PDF
    This study aims to explore the effect of touch simulation on virtual reality (VR) store satisfaction mediated by VR shopping self-efficacy and VR shopping pleasure. The moderation effects of the autotelic and instrumental need for touch between touch simulation and VR store satisfaction are also explored. Participants wear a head-mounted display VR device (Oculus Go) in a controlled laboratory environment, and their VR store experience is recorded as data. All participants’ responses (n = 58) are analyzed using SPSS 20.0 for descriptive statistics, reliability analysis, exploratory factor analysis, and the Process macro model analysis. The results show that touch simulation positively influences VR store satisfaction, which is mediated by the self-efficacy and by the dual path of the self-efficacy and the pleasure. Furthermore, the relation between touch simulation and pleasure is moderated by need for touch. For individuals with a high level of autotelic need for touch, the effect of touch simulation on the pleasure is heightened. However, instrumental need for touch does not moderate the path of touch simulation on the self-efficacy

    A Portrait of Emotion: Empowering Self-Expression through AI-Generated Art

    Full text link
    We investigated the potential and limitations of generative artificial intelligence (AI) in reflecting the authors' cognitive processes through creative expression. The focus is on the AI-generated artwork's ability to understand human intent (alignment) and visually represent emotions based on criteria such as creativity, aesthetic, novelty, amusement, and depth. Results show a preference for images based on the descriptions of the authors' emotions over the main events. We also found that images that overrepresent specific elements or stereotypes negatively impact AI alignment. Our findings suggest that AI could facilitate creativity and the self-expression of emotions. Our research framework with generative AIs can help design AI-based interventions in related fields (e.g., mental health education, therapy, and counseling).Comment: Accepted CogSci 202

    Q&A with Mythopoeic Award Winners

    Get PDF
    Q&A with Mythopoeic Award Winners Roundtable by Dennis Wise, James Gifford, Theodora Goss, and Yoon Ha Lee. Tech Mod: Cait Rottle

    A STUDY ON THE ESTIMATION METHOD OF THE FORM FACTOR FOR A FULL-SCALE SHIP

    Get PDF
    In this study, a prediction method of the form factor for a full-scale ship is suggested to minimize the power prediction error from a small model ship. Numerical simulations were carried out at various Reynolds numbers from a small model to a full-scale ship. The variation of the form factors was investigated from the results of the numerical simulation according to the Reynolds numbers. In addition, the results from the numerical simulations and experimental data of the geosim models were utilized to drive the correlation line and predict the form factor of a full-scale ship. The correlation line was applied to predict the effective power and the delivered power of a full-scale ship. As a result, the developed prediction method confirmed the possibility of predicting the power reliably from experiments using a small model

    A lab-on-a-disc platform enables serial monitoring of individual CTCs associated with tumor progression during EGFR-targeted therapy for patients with NSCLC

    Get PDF
    Rationale: Unlike traditional biopsy, liquid biopsy, which is a largely non-invasive diagnostic and monitoring tool, can be performed more frequently to better track tumors and mutations over time and to validate the efficiency of a cancer treatment. Circulating tumor cells (CTCs) are considered promising liquid biopsy biomarkers; however, their use in clinical settings is limited by high costs and a low throughput of standard platforms for CTC enumeration and analysis. In this study, we used a label-free, high-throughput method for CTC isolation directly from whole blood of patients using a standalone, clinical setting-friendly platform. Methods: A CTC-based liquid biopsy approach was used to examine the efficacy of therapy and emergent drug resistance via longitudinal monitoring of CTC counts, DNA mutations, and single-cell-level gene expression in a prospective cohort of 40 patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. Results: The change ratio of the CTC counts was associated with tumor response, detected by CT scan, while the baseline CTC counts did not show association with progression-free survival or overall survival. We achieved a 100% concordance rate for the detection of EGFR mutation, including emergence of T790M, between tumor tissue and CTCs. More importantly, our data revealed the importance of the analysis of the epithelial/mesenchymal signature of individual pretreatment CTCs to predict drug responsiveness in patients. Conclusion: The fluid-assisted separation technology disc platform enables serial monitoring of CTC counts, DNA mutations, as well as unbiased molecular characterization of individual CTCs associated with tumor progression during targeted therapy
    corecore