2,150 research outputs found

    Explaining the Color Distributions of Globular Cluster Systems in Elliptical Galaxies

    Full text link
    The colors of globular clusters in most of large elliptical galaxies are bimodal. This is generally taken as evidence for the presence of two cluster subpopulations that have different geneses. However, here we find that, because of the non-linear nature of the metallicity-to-color transformation, a coeval group of old clusters with a unimodal metallicity spread can exhibit color bimodality. The models of cluster colors indicate that the horizontal-branch stars are the main drivers behind the empirical non-linearity. We show that the scenario gives simple and cohesive explanations for all the key observations, and could simplify theories of elliptical galaxy formation.Comment: Science, 311, 1129; Minor changes to text to match the published version (9 pages, 3 figures

    Identification of cDNA Encoding a Serine Protease Homologous to Human Complement C1r Precursor from Grafted Mouse Skin

    Get PDF
    We isolated a cDNA clone from grafted mouse skin that encodes a serine protease homologous to human C1r. The C1r protease is involved in the activation of the first component of the classical pathway in the complement system. In order to identify novel transcripts whose expression is regulated in grafted mouse skin, we first perfomed differential display reverse transcription polymerase chain reaction analysis and obtained 18 partial cDNA clones whose protein products are likely to play an important role in allograft rejection. One of these showed significant sequence homology with human complement C1r precursor. The other clones displayed no homology to any known sequences, however. Northern blot analysis demonstrated that the level of this transcript was upregulated in day 8 postgrafted skin. The full-length cDNA 2121 nucleotides in length obtained from screening a mouse skin cDNA library contained a single open reading frame encoding 707 amino acid residues with a calculated molecular weight of 80,732 Da. Its deduced amino acid sequence revealed an 81% identity and 89% similarity to the human C1r counterpart. In particular, mouse C1r contained His501, Asp559, and Ser656, which were conserved among this group of serine proteases. This protein was thus designated as mouse C1r. We have expressed a truncated fragment of C1r protein without the N-terminal hydrophobic sequence in Escherichia coli and generated a polyclonal antibody against it. Subsequent immunohistochemical analysis confirmed that mouse C1r was significantly expressed 8 d after the skin graft in both allografted and autografted skins, compared with normal skins. These collective data suggest that a component of the complement system, C1r, might contribute to the graft versus host immune responses in mice

    Electric field control of nonvolatile four-state magnetization at room temperature

    Get PDF
    We find the realization of large converse magnetoelectric (ME) effects at room temperature in a multiferroic hexaferrite Ba0.52_{0.52}Sr2.48_{2.48}Co2_{2}Fe24_{24}O41_{41} single crystal, in which rapid change of electric polarization in low magnetic fields (about 5 mT) is coined to a large ME susceptibility of 3200 ps/m. The modulation of magnetization then reaches up to 0.62 μ\muB_{B}/f.u. in an electric field of 1.14 MV/m. We find further that four ME states induced by different ME poling exhibit unique, nonvolatile magnetization versus electric field curves, which can be approximately described by an effective free energy with a distinct set of ME coefficients

    Approximation of most penetrating particle size for fibrous filters considering Cunningham slip correction factor

    Get PDF
    In the estimation of the aerosol single fiber efficiency using fibrous filters, there is a size range, where the particles penetrate most effectively through the fibrous collectors, and corresponding minimum single fiber efficiency. For small particles in which the diffusion mechanism is dominant, the Cunningham slip correction factor (Cc) affects the single fiber efficiency and the most penetrating particle size (MPPS). Therefore, for accurate estimation, Cc is essential to be considered. However, many previous studies have neglected this factor because of its complexity and the associated difficulty in deriving the appropriate parameterization particularly for the MPPS. In this study, the expression for the MPPS, and the corresponding expression for the minimum single fiber efficiency are analytically derived, and the effects of Cc are determined. In order to accommodate the slip factor for all particle-size ranges, Cc is simplified and modified. Overall, the obtained analytical expression for the MPPS is in a good agreement with the exact solution

    Realization of giant magnetoelectricity in helimagnets

    Get PDF
    We show that low field magnetoelectric (ME) properties of helimagnets Ba0.5Sr1.5Zn2(Fe1-xAlx)12O22 can be efficiently tailored by Al-substitution level. As x increases, the critical magnetic field for switching electric polarization is systematically reduced from ~1 T down to ~1 mT, and the ME susceptibility is greatly enhanced to reach a giant value of 2.0 x 10^4 ps/m at an optimum x = 0.08. We find that control of nontrivial orbital moment in the octahedral Fe sites through the Al-substitution is crucial for fine tuning of magnetic anisotropy and obtaining the conspicuously improved ME characteristics

    Resting-State Glucose Metabolism Level Is Associated with the Regional Pattern of Amyloid Pathology in Alzheimer's Disease

    Get PDF
    It has been suggested that glucose metabolism within the brain's default network is directly associated with—and may even cause—the amyloid pathology of Alzheimer's disease (AD). Here we performed 2-[18F]fluoro-2-deoxy-D-glucose (FDG) and [11C]-labeled Pittsburgh Compound B (PIB) positron emission tomography (PET) on cognitively normal elderly subjects and on AD patients and conducted quantitative regional analysis of FDG- and PIB-PET images using an automated region of interest technique. We confirmed that resting glucose metabolism within the posterior components of the brain's default network is high in normal elderly subjects and low in AD patients, which is partially in agreement with the regional pattern of PIB uptake within the default network of AD patients. However, in several regions outside the default network, glucose metabolism was high in normal elderly subjects but was not depressed in AD patients, who exhibited significantly increased PIB uptakes in these regions. In contrast, the level of resting glucose metabolism in the default network and in regions outside the default network in normal elderly subjects was significantly correlated with the level of regional PIB uptake in AD patients. These results are discussed with experimental evidence suggesting that beta amyloid production and amyloid precursor protein regulation are dependent on neuronal activity
    corecore