27,513 research outputs found
(2,2)-Formalism of General Relativity: An Exact Solution
I discuss the (2,2)-formalism of general relativity based on the
(2,2)-fibration of a generic 4-dimensional spacetime of the Lorentzian
signature. In this formalism general relativity is describable as a Yang-Mills
gauge theory defined on the (1+1)-dimensional base manifold, whose local gauge
symmetry is the group of the diffeomorphisms of the 2-dimensional fibre
manifold. After presenting the Einstein's field equations in this formalism, I
solve them for spherically symmetric case to obtain the Schwarzschild solution.
Then I discuss possible applications of this formalism.Comment: 2 figures included, IOP style file neede
N_pN_n dependence of empirical formula for the lowest excitation energy of the 2^+ states in even-even nuclei
We examine the effects of the additional term of the type on the recently proposed empirical formula for the lowest excitation
energy of the states in even-even nuclei. This study is motivated by the
fact that this term carries the favorable dependence of the valence nucleon
numbers dictated by the scheme. We show explicitly that there is not
any improvement in reproducing by including the extra
term. However, our study also reveals that the excitation energies
, when calculated by the term alone (with the mass number
dependent term), are quite comparable to those calculated by the original
empirical formula.Comment: 14 pages, 5 figure
Dynamic model for failures in biological systems
A dynamic model for failures in biological organisms is proposed and studied
both analytically and numerically. Each cell in the organism becomes dead under
sufficiently strong stress, and is then allowed to be healed with some
probability. It is found that unlike the case of no healing, the organism in
general does not completely break down even in the presence of noise. Revealed
is the characteristic time evolution that the system tends to resist the stress
longer than the system without healing, followed by sudden breakdown with some
fraction of cells surviving. When the noise is weak, the critical stress beyond
which the system breaks down increases rapidly as the healing parameter is
raised from zero, indicative of the importance of healing in biological
systems.Comment: To appear in Europhys. Let
Altered brainstem responses to modafinil in schizophrenia: implications for adjunctive treatment of cognition.
Candidate pro-cognitive drugs for schizophrenia targeting several neurochemical systems have consistently failed to demonstrate robust efficacy. It remains untested whether concurrent antipsychotic medications exert pharmacodynamic interactions that mitigate pro-cognitive action in patients. We used functional MRI (fMRI) in a randomized, double-blind, placebo-controlled within-subject crossover test of single-dose modafinil effects in 27 medicated schizophrenia patients, interrogating brainstem regions where catecholamine systems arise to innervate the cortex, to link cellular and systems-level models of cognitive control. Modafinil effects were evaluated both within this patient group and compared to a healthy subject group. Modafinil modulated activity in the locus coeruleus (LC) and ventral tegmental area (VTA) in the patient group. However, compared to the healthy comparison group, these effects were altered as a function of task demands: the control-independent drug effect on deactivation was relatively attenuated (shallower) in the LC and exaggerated (deeper) in the VTA; in contrast, again compared to the comparison group, the control-related drug effects on positive activation were attenuated in LC, VTA and the cortical cognitive control network. These altered effects in the LC and VTA were significantly and specifically associated with the degree of antagonism of alpha-2 adrenergic and dopamine-2 receptors, respectively, by concurrently prescribed antipsychotics. These sources of evidence suggest interacting effects on catecholamine neurons of chronic antipsychotic treatment, which respectively increase and decrease sustained neuronal activity in LC and VTA. This is the first direct evidence in a clinical population to suggest that antipsychotic medications alter catecholamine neuronal activity to mitigate pro-cognitive drug action on cortical circuits
Modeling the effect of variation in sagittal curvature on the force required to produce a follower load in the lumbar spine
Peer reviewedPreprin
Impact of reionization on CMB polarization tests of slow-roll inflation
Estimates of inflationary parameters from the CMB B-mode polarization
spectrum on the largest scales depend on knowledge of the reionization history,
especially at low tensor-to-scalar ratio. Assuming an incorrect reionization
history in the analysis of such polarization data can strongly bias the
inflationary parameters. One consequence is that the single-field slow-roll
consistency relation between the tensor-to-scalar ratio and tensor tilt might
be excluded with high significance even if this relation holds in reality. We
explain the origin of the bias and present case studies with various tensor
amplitudes and noise characteristics. A more model-independent approach can
account for uncertainties about reionization, and we show that parametrizing
the reionization history by a set of its principal components with respect to
E-mode polarization removes the bias in inflationary parameter measurement with
little degradation in precision.Comment: 9 pages, 6 figures; submitted to Phys. Rev.
Core-Shell homojunction silicon vertical nanowire tunneling field-effect transistors
We propose three-terminal core-shell (CS) silicon vertical nanowire tunneling field-effect transistors (TFETs), which can be fabricated by conventional CMOS technology. CS TFETs show lower subthreshold swing (SS) and higher on-state current than conventional TFETs through their high surface-to-volume ratio, which increases carrier-tunneling region with no additional device area. The on-state current can be enhanced by increasing the nanowire height, decreasing equivalent oxide thickness (EOT) or creating a nanowire array. The off-state current is also manageable for power saving through selective epitaxial growth at the top-side nanowire region. CS TFETs with an EOT of 0.8 nm and an aspect ratio of 20 for the core nanowire region provide the largest drain current ranges with point SS values below 60 mV/dec and superior on/off current ratio under all operation voltages of 0.5, 0.7, and 1.0 V. These devices are promising for low-power applications at low fabrication cost and high device density.1130Ysciescopu
Revealing Cosmic Rotation
Cosmological Birefringence (CB), a rotation of the polarization plane of
radiation coming to us from distant astrophysical sources, may reveal parity
violation in either the electromagnetic or gravitational sectors of the
fundamental interactions in nature. Until only recently this phenomenon could
be probed with only radio observations or observations at UV wavelengths.
Recently, there is a substantial effort to constrain such non-standard models
using observations of the rotation of the polarization plane of cosmic
microwave background (CMB) radiation. This can be done via measurements of the
-modes of the CMB or by measuring its TB and EB correlations which vanish in
the standard model. In this paper we show that correlations-based
estimator is the best for upcoming polarization experiments. The based
estimator surpasses other estimators because it has the smallest noise and of
all the estimators is least affected by systematics. Current polarimeters are
optimized for the detection of -mode polarization from either primordial
gravitational waves or by large scale structure via gravitational lensing. In
the paper we also study optimization of CMB experiments for the detection of
cosmological birefringence, in the presence of instrumental systematics, which
by themselves are capable of producing correlations; potentially mimicking
CB.Comment: 10 pages, 3 figures, 2 table
Benefits of greenhouse gas mitigation on the supply, management, and use of water resources in the United States
Climate change impacts on water resources in the United States are likely to be far-reaching and substantial because the water is integral to climate, and the water sector spans many parts of the economy. This paper estimates impacts and damages from five water resource-related models addressing runoff, drought risk, economics of water supply/demand, water stress, and flooding damages. The models differ in the water system assessed, spatial scale, and unit of assessment, but together provide a quantitative and descriptive richness in characterizing water sector effects that no single model can capture. The results, driven by a consistent set of greenhouse gas (GHG) emission and climate scenarios, examine uncertainty from emissions, climate sensitivity, and climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, broad conclusions can be drawn regarding patterns of change and benefits of GHG mitigation. Four key findings emerge: 1) GHG mitigation substantially reduces hydro-climatic impacts on the water sector; 2) GHG mitigation provides substantial national economic benefits in water resources related sectors; 3) the models show a strong signal of wetting for the Eastern US and a strong signal of drying in the Southwest; and 4) unmanaged hydrologic systems impacts show strong correlation with the change in magnitude and direction of precipitation and temperature from climate models, but managed water resource systems and regional economic systems show lower correlation with changes in climate variables due to non-linearities created by water infrastructure and the socio-economic changes in non-climate driven water demand
- …