5,398 research outputs found

    Protective Role of CYP1A1*2A in the Development of Multiple Myeloma

    Get PDF
    Introduction and Aims: We had previously reported the association of the N QO1*2/*2 polymorphism with a decreased risk for multiple myeloma (MM) in Koreans (odds ratio [OR], 0.24; 95% CI, 0.01-0.68).

    Proton and Helium Spectra from the CREAM-III Flight

    Full text link
    Primary cosmic-ray elemental spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment since 2004. The third CREAM payload (CREAM-III) flew for 29 days during the 2007-2008 Antarctic season. Energies of incident particles above 1 TeV are measured with a calorimeter. Individual elements are clearly separated with a charge resolution of ~0.12 e (in charge units) and ~0.14 e for protons and helium nuclei, respectively, using two layers of silicon charge detectors. The measured proton and helium energy spectra at the top of the atmosphere are harder than other existing measurements at a few tens of GeV. The relative abundance of protons to helium nuclei is 9.53+-0.03 for the range of 1 TeV/n to 63 TeV/n. The ratio is considerably smaller than other measurements at a few tens of GeV/n. The spectra become softer above ~20 TeV. However, our statistical uncertainties are large at these energies and more data are needed

    Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight

    Full text link
    Cosmic-ray proton and helium spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data were collected at an average altitude of ~38.5 km with an average atmospheric overburden of ~3.9 g cm−2^{-2}. Individual elements are clearly separated with a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and helium nuclei, respectively. The measured spectra at the top of the atmosphere are represented by power laws with a spectral index of -2.66 ±\pm 0.02 for protons from 2.5 TeV to 250 TeV and -2.58 ±\pm 0.02 for helium nuclei from 630 GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a few tens of GeV/nucleon. The helium flux is higher than that expected from the extrapolation of the power law fitted to the lower-energy data. The relative abundance of protons to helium nuclei is 9.1 ±\pm 0.5 for the range from 2.5 TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the previous measurements at a few tens of GeV/nucleon.Comment: 20 pages, 4 figure
    • 

    corecore