1,138 research outputs found

    Zero-frequency Bragg gap by spin-harnessed metamaterial

    Get PDF
    The Bragg gap that stops wave propagation may not be formed from zero or a very low frequency unless the periodicity of a periodic system is unrealistically large. Accordingly, the Bragg gap has been considered to be inappropriate for low frequency applications despite its broad bandwidth. Here, we report a new mechanism that allows formation of the Bragg gap starting from a nearly zero frequency. The mechanism is based on the finding that if additional spin motion is coupled with the longitudinal motion of a mass of a diatomic mechanical periodic system, the Bragg gap starting from a nearly zero frequency can be formed. The theoretical analysis shows that the effective mass and stiffness at the band gap frequencies are all positive, confirming that the formed stop band is a Bragg gap. The periodic system is realized by a spin-harnessed metamaterial which incorporates unique linkage mechanisms. The numerical and experimental validation confirmed the formation of the low-frequency Bragg gap. The zero-frequency Bragg gap is expected to open a new way to control hard-to-shield low-frequency vibration and noise

    Recycling Studies for Swine Manure Slurry Using Multi Process of Aerobic Digestion (MPAD)

    Get PDF
    This study was carried out to investigate the feasibility of Multi Process of Aerobic Digestion (MPAD) for recycling of swine manure slurry as fertilizer. MPAD consisted of three kinds of difference process which are thermophilic aerobic oxidation (TAO) system, lime solidification system, and reverse osmosis (R/O) membrane system. TAO system was studied well previously for decade. The chemical composition of the lime-treated solid fertilizer was as like that organic matter 17.4%, moisture 34.1%, N 0.9%, P 1.7%, K 0.3%, Ca 12.7%, and which was expected to be useful as acid soil amendment material. The concentrated liquid material produced by R/O membrane system was also expected as a good fertilizer for crops production and soil fertility improvement.OtherShinshu University International Symposium 2010 : Sustainable Agriculture and Environment : Asian Networks II  信州大学国際シンポジウム2010 : 持続的農業と環境 : アジアネットワークII ― アジアネットワークの発展をめざして―. 信州大学農学部, 2010, 71-77conference pape

    Molecular Design Approach Managing Molecular Orbital Superposition for High Efficiency without Color Shift in Thermally Activated Delayed Fluorescent Organic Lightâ Emitting Diodes

    Full text link
    Molecular design principles of thermally activated delayed fluorescent (TADF) emitters having a high quantum efficiency and a color tuning capability was investigated by synthesizing three TADF emitters with donors at different positions of a benzonitrile acceptor. The position rendering a large overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) enhances the quantum efficiency of the TADF emitter. Regarding the orbital overlap, donor attachments at 2â and 6â positions of the benzonitrile were more beneficial than 3â and 5â substitutions. Moreover, an additional attachment of a weak donor at the 4â position further increased the quantum efficiency without decreasing the emission energy. Therefore, the molecular design strategy of substituting strong donors at the positions allowing a large molecular orbital overlap and an extra weak donor is a good approach to achieve both high quantum efficiency and a slightly increased emission energy.Overlap to emit: The substitution of strong donors at the positions rendering a large HOMOâ LUMO overlap and the addition of a weak donor constitute an effective design approach to realize TADF emitters having high efficiency.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147817/1/chem201805616-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147817/2/chem201805616.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147817/3/chem201805616_am.pd

    The Fruit Hull of Gleditsia sinensis

    Get PDF
    Lung cancer has substantial mortality worldwide, and chemotherapy is a routine regimen for the treatment of patients with lung cancer, despite undesirable effects such as drug resistance and chemotoxicity. Here, given a possible antitumor effect of the fruit hull of Gleditsia sinensis (FGS), we tested whether FGS enhances the effectiveness of cis-diammine dichloridoplatinum (II) (CDDP), a chemotherapeutic drug. We found that CDDP, when administered with FGS, significantly decreased the viability and increased the apoptosis and cell cycle arrest of Lewis lung carcinoma (LLC) cells, which were associated with the increase of p21 and decreases of cyclin D1 and CDK4. Concordantly, when combined with FGS, CDDP significantly reduced the volume and weight of tumors derived from LLC subcutaneously injected into C57BL/6 mice, with concomitant increases of phosphor-p53 and p21 in tumor tissue. Together, these results show that FGS could enhance the antitumor activity of CDDP, suggesting that FGS can be used as a complementary measure to enhance the efficacy of a chemotherapeutic agent such as CDDP

    Immature Gastric Teratoma in an Infant: A Case Report

    Get PDF
    Gastric teratomas are extremely rare neoplasms and almost exclusively benign. They occur predominantly in males and generally present as a palpable abdominal mass. To our knowledge, only one adult case has been described in the Korean literature. We report a case in which an immature gastric teratoma in a 3-month-old boy was revealed by CT and US
    corecore