127 research outputs found

    Habitat use, territoriality, and parental behavior of orange-crowned warblers (Oreothlypis celata)

    Get PDF
    2010 Fall.Includes bibliographical references.To view the abstract, please see the full text of the document

    Global and regional trends of Aerosol Optical Thickness derived using satellite- and ground-based observations

    Get PDF
    Atmospheric aerosol plays a critical role for human health, air quality, long range transport of pollution, and the Earth s radiative balance, thereby influencing global climate change. To test our scientific understanding and provide an evidence base for policymakers, long-term temporal changes of local, regional, and global aerosols are needed. Remote sensing from satellite borne and ground based observations offers unique opportunities to provide such data. However, only a few studies have discussed the limitations, associated with unrepresentative sampling originating from large/persistent cloud disturbance and limited/different sampling (limited orbital periods and different sampling times) in the trend analysis. Using a linear weighted model, the long-term trends of global AOTs from various polar orbiting satellites and ground observations: MODIS (aboard Terra), MISR (Terra), SeaWiFS (OrbView-2), MODIS (Aqua), and AERONET have been analyzed. In this manner, the present study attempts to minimize the influence of unrepresentative sampling in the trend analysis. Throughout terrestrial and marine regions, temporal increase of cloud-free AOTs were dominat over the globe (GL), northern (NH), and southern hemisphere (SH) (up to 0.00348±0.00185 for GL, 0.00514±0.00272 for NH, and 0.00232±0.00124 per year for SH). Generally, consistently in all observations, the weighted trends over Eastern US and OECD Europe showed a strong decreasing AOT (up to -0.00376±0.00174 for Eastern US and -0.00530±0.00304 per year for OECD Europe) attributed to the recent environmental legislation and resulting regulation of emissions. A significant increase was observed over Saharan/Arabian deserts, South, and East Asia (up to 0.00618±0.00326, 0.01452±0.00615, and 0.01939±0.00986 per year, respectively). These in part dramatic increases are caused by the enhanced amount of aerosol transported/emitted from industrialization, urbanization, deforestation, desertification, and climate change. Overall large/persistent cloud disturbance all year round and the limited/different sampling of polar orbiting satellites represent a challenge, which has been addressed successfully in this study for the accurate determination of aerosol amount and its trends

    Detection and monitoring of forest fires using Himawari-8 geostationary satellite data in South Korea

    Get PDF
    Geostationary satellite remote sensing systems are a useful tool for forest fire detection and monitoring because of their high temporal resolution over large areas. In this study, we propose a combined 3-step forest fire detection algorithm (i.e., thresholding, machine learning-based modeling, and post processing) using Himawari-8 geostationary satellite data over South Korea. This threshold-based algorithm filtered the forest fire candidate pixels using adaptive threshold values considering the diurnal cycle and seasonality of forest fires while allowing a high rate of false alarms. The random forest (RF) machine learning model then effectively removed the false alarms from the results of the threshold-based algorithm (overall accuracy ~99.16%, probability of detection (POD) ~93.08%, probability of false detection (POFD) ~0.07%, and 96% reduction of the false alarmed pixels for validation), and the remaining false alarms were removed through post-processing using the forest map. The proposed algorithm was compared to the two existing methods. The proposed algorithm (POD ~ 93%) successfully detected most forest fires, while the others missed many small-scale forest fires (POD ~ 50-60%). More than half of the detected forest fires were detected within 10 min, which is a promising result when the operational real-time monitoring of forest fires using more advanced geostationary satellite sensor data (i.e., with higher spatial and temporal resolutions) is used for rapid response and management of forest fires

    Matrix Metalloproteinase-3 Causes Dopaminergic Neuronal Death through Nox1-Regenerated Oxidative Stress

    Get PDF
    In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach

    Matrix Metalloproteinase-3 Causes Dopaminergic Neuronal Death through Nox1-Regenerated Oxidative Stress

    Get PDF
    In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach

    Role of Neuronal NADPH Oxidase 1 in the Peri-Infarct Regions after Stroke

    Get PDF
    The molecular mechanism underlying the selective vulnerability of neurons to oxidative damage caused by ischemia-reperfusion (I/R) injury remains unknown. We sought to determine the role of NADPH oxidase 1 (Nox1) in cerebral I/R-induced brain injury and survival of newborn cells in the ischemic injured region. Male Wistar rats were subjected to 90 min middle cerebral artery occlusion (MCAO) followed by reperfusion. After reperfusion, infarction size, level of superoxide and 8-hydroxy-20-deoxyguanosine (8-oxo-2dG), and Nox1 immunoreactivity were determined. RNAi-mediated knockdown of Nox1 was used to investigate the role of Nox1 in I/R-induced oxidative damage, neuronal death, motor function recovery, and ischemic neurogenesis. After I/R, Nox1 expression and 8-oxo-2dG immunoreactivity was increased in cortical neurons of the peri-infarct regions. Both infarction size and neuronal death in I/R injury were significantly reduced by adeno-associated virus (AAV)-mediated transduction of Nox1 short hairpin RNA (shRNA). AAV-mediated Nox1 knockdown enhanced functional recovery after MCAO. The level of survival and differentiation of newborn cells in the peri-infarct regions were increased by Nox1 inhibition. Our data suggest that Nox-1 may be responsible for oxidative damage to DNA, subsequent cortical neuronal degeneration, functional recovery, and regulation of ischemic neurogenesis in the peri-infarct regions after stroke

    Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    Get PDF
    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from MI [basic algorithm] = 0.41AERONET + 0.16 to MI [new algorithm] = 0.70AERONET + 0.01
    corecore