25,200 research outputs found

    Generation of Suprathermal Electrons by Collective Processes in Collisional Plasma

    Get PDF
    The ubiquity of high-energy tails in the charged particle velocity distribution functions observed in space plasmas suggests the existence of an underlying process responsible for taking a fraction of the charged particle population out of thermal equilibrium and redistributing it to suprathermal velocity and energy ranges. The present Letter focuses on a new and fundamental physical explanation for the origin of suprathermal electron distribution function in a highly collisional plasma. This process involves a newly discovered electrostatic bremsstrahlung emission that is effective in a plasma in which binary collisions are present. The steady-state electron velocity distribution function dictated by such a process corresponds to a Maxwellian core plus a quasi-inverse power-law tail, which is a feature commonly observed in many space plasma environment. In order to demonstrate this, the system of self-consistent particle- and wave- kinetic equations are numerically solved with an initially Maxwellian electron velocity distribution and Langmuir wave spectral intensity, which is a state that does not reflect the presence of electrostatic bremsstrahlung process, and hence not in force balance. The electrostatic bremsstrahlung term subsequently drives the system to a new force-balanced steady state. After a long integration period it is demonstrated the initial Langmuir fluctuation spectrum is modified, which in turn distorts the initial Maxwellian electron distribution into a velocity distribution that resembles the said core-suprathermal velocity distribution. Such a mechanism may thus be operative at the coronal source region, which is characterized by high collisionality.Comment: 7 pages, 2 figures. Published at: The Astrophysical Journal Letters, Volume 849, Number 2, L30. url: https://doi.org/10.3847/2041-8213/aa956

    N_pN_n dependence of empirical formula for the lowest excitation energy of the 2^+ states in even-even nuclei

    Full text link
    We examine the effects of the additional term of the type ∼e−λ′NpNn\sim e^{- \lambda' N_pN_n} on the recently proposed empirical formula for the lowest excitation energy of the 2+2^+ states in even-even nuclei. This study is motivated by the fact that this term carries the favorable dependence of the valence nucleon numbers dictated by the NpNnN_pN_n scheme. We show explicitly that there is not any improvement in reproducing Ex(21+)E_x(2_1^+) by including the extra NpNnN_pN_n term. However, our study also reveals that the excitation energies Ex(21+)E_x(2_1^+), when calculated by the NpNnN_pN_n term alone (with the mass number AA dependent term), are quite comparable to those calculated by the original empirical formula.Comment: 14 pages, 5 figure

    Dynamic model for failures in biological systems

    Full text link
    A dynamic model for failures in biological organisms is proposed and studied both analytically and numerically. Each cell in the organism becomes dead under sufficiently strong stress, and is then allowed to be healed with some probability. It is found that unlike the case of no healing, the organism in general does not completely break down even in the presence of noise. Revealed is the characteristic time evolution that the system tends to resist the stress longer than the system without healing, followed by sudden breakdown with some fraction of cells surviving. When the noise is weak, the critical stress beyond which the system breaks down increases rapidly as the healing parameter is raised from zero, indicative of the importance of healing in biological systems.Comment: To appear in Europhys. Let

    Large Amplitude Dynamics of the Pairing Correlations in a Unitary Fermi Gas

    Full text link
    A unitary Fermi gas has a surprisingly rich spectrum of large amplitude modes of the pairing field alone, which defies a description within a formalism involving only a reduced set of degrees of freedom, such as quantum hydrodynamics or a Landau-Ginzburg-like description. These modes are very slow, with oscillation frequencies well below the pairing gap, which makes their damping through quasiparticle excitations quite ineffective. In atomic traps these modes couple naturally with the density oscillations, and the corresponding oscillations of the atomic cloud are an example of a new type of collective mode in superfluid Fermi systems. They have lower frequencies than the compressional collective hydrodynamic oscillations, have a non-spherical momentum distribution, and could be excited by a quick time variation of the scattering length.Comment: 4 pages, 3 figures, published version, updated figures and a number of change

    Dynamic model of fiber bundles

    Full text link
    A realistic continuous-time dynamics for fiber bundles is introduced and studied both analytically and numerically. The equation of motion reproduces known stationary-state results in the deterministic limit while the system under non-vanishing stress always breaks down in the presence of noise. Revealed in particular is the characteristic time evolution that the system tends to resist the stress for considerable time, followed by sudden complete rupture. The critical stress beyond which the complete rupture emerges is also obtained

    Particle-in-cell and weak turbulence simulations of plasma emission

    Full text link
    The plasma emission process, which is the mechanism for solar type II and type III radio bursts phenomena, is studied by means of particle-in-cell and weak turbulence simulation methods. By plasma emission, it is meant as a loose description of a series of processes, starting from the solar flare associated electron beam exciting Langmuir and ion-acoustic turbulence, and subsequent partial conversion of beam energy into the radiation energy by nonlinear processes. Particle-in-cell (PIC) simulation is rigorous but the method is computationally intense, and it is difficult to diagnose the results. Numerical solution of equations of weak turbulence (WT) theory, termed WT simulation, on the other hand, is efficient and naturally lends itself to diagnostics since various terms in the equation can be turned on or off. Nevertheless, WT theory is based upon a number of assumptions. It is, therefore, desirable to compare the two methods, which is carried out for the first time in the present paper with numerical solutions of the complete set of equations of the WT theory and with two-dimensional electromagnetic PIC simulation. Upon making quantitative comparisons it is found that WT theory is largely valid, although some discrepancies are also found. The present study also indicates that it requires large computational resources in order to accurately simulate the radiation emission processes, especially for low electron beam speeds. Findings from the present paper thus imply that both methods may be useful for the study of solar radio emissions as they are complementary.Comment: 21 pages, 9 figure

    Electromechanical tuning of vertically-coupled photonic crystal nanobeams

    Get PDF
    We present the design, the fabrication and the characterization of a tunable one-dimensional (1D) photonic crystal cavity (PCC) etched on two vertically-coupled GaAs nanobeams. A novel fabrication method which prevents their adhesion under capillary forces is introduced. We discuss a design to increase the flexibility of the structure and we demonstrate a large reversible and controllable electromechanical wavelength tuning (> 15 nm) of the cavity modes.Comment: 11 pages, 4 figure

    Nonlinear Development of Streaming Instabilities In Strongly Magnetized Plasmas

    Full text link
    The nonlinear development of streaming instabilities in the current layers formed during magnetic reconnection with a guide field is explored. Theory and 3-D particle-in-cell simulations reveal two distinct phases. First, the parallel Buneman instability grows and traps low velocity electrons. The remaining electrons then drive two forms of turbulence: the parallel electron-electron two-stream instability and the nearly-perpendicular lower hybrid instability. The high velocity electrons resonate with the turbulence and transfer momentum to the ions and low velocity electrons.Comment: Accepted by PR
    • …
    corecore