2,310 research outputs found

    Forbidden Channels and SIMP Dark Matter

    Full text link
    In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.Comment: 5 pages, Prepared for the proceedings of the 13th International Conference on Gravitation, 3-7 July 201

    On thermal production of self-interacting dark matter

    Full text link
    We consider thermal production mechanisms of self-interacting dark matter in models with gauged Z3Z_3 symmetry. A complex scalar dark matter is stabilized by the Z3Z_3, that is the remnant of a local dark U(1)dU(1)_d. Light dark matter with large self-interaction can be produced from thermal freeze-out in the presence of SM-annihilation, SIMP and/or forbidden channels. We show that dark photon and/or dark Higgs should be relatively light for unitarity and then assist the thermal freeze-out. We identify the constraints on the parameter space of dark matter self-interaction and mass in cases that one or some of the channels are important in determining the relic density.Comment: 26 pages, 11 figures, Version to appear in Journal of High Energy Physic

    Unitary inflaton as decaying dark matter

    Full text link
    We consider the inflation model of a singlet scalar field (sigma field) with both quadratic and linear non-minimal couplings where unitarity is ensured up to the Planck scale. We assume that a Z2Z_2 symmetry for the sigma field is respected by the scalar potential in Jordan frame but it is broken explicitly by the linear non-minimal coupling due to quantum gravity. We discuss the impacts of the linear non-minimal coupling on various dynamics from inflation to low energy, such as a sizable tensor-to-scalar ratio, a novel reheating process with quartic potential dominance, and suppressed physical parameters in the low energy, etc. In particular, the linear non-minimal coupling leads to the linear couplings of the sigma field to the Standard Model through the trace of the energy-momentum tensor in Einstein frame. Thus, regarding the sigma field as a decaying dark matter, we consider the non-thermal production mechanisms for dark matter from the decays of Higgs and inflaton condensate and show the parameter space that is compatible with the correct relic density and cosmological constraints.Comment: 36 pages, 7 figures, v2: minor corrections made and references added, v3: discussion on preheating added, accepted for Journal of High Energy Physics, v4: Lyman-alpha bound included and inflationary predictions refined for perturbative reheatin

    A minimal flavored U(1)β€²U(1)' for BB-meson anomalies

    Full text link
    We consider an anomaly-free U(1)β€²U(1)' model with favorable couplings to heavy flavors in the Standard Model(SM), as motivated by BB-meson anomalies at LHCb. Taking the U(1)β€²U(1)' charge to be Qβ€²=y(LΞΌβˆ’LΟ„)+x(B3βˆ’L3)Q'=y(L_\mu-L_\tau)+ x(B_3-L_3), we can explain the BB-meson anomalies without invoking extra charged fermions or flavor violation beyond the SM. We show that there is a viable parameter space with a small xx that is compatible with other meson decays, tau lepton and neutrino experiments as well as the LHC dimuon searches. We briefly discuss the prospects of discovering the Zβ€²Z' gauge boson at the LHC in the proposed model.Comment: 20 pages, 4 figures, v2: references and discussion on electroweak precision test added, v3: Version to appear in Physical Review
    • …
    corecore