7 research outputs found

    Electromagnetic Levitation System for Active Magnetic Bearing Wheels

    Get PDF
    In this chapter, the author presents an electromagnetic levitation system for active magnetic bearing wheels. This system consists of a rotor, a shaft, a cover, and a base. The author derives a meaningful electromagnetic force by using the singular value decomposition. The author develops a control system using the proportional‐integral‐derivative controller to control the position of the rotor and regulate the two gimbal angles of the rotor. The author gives the numerical simulation and experimental results on the control of the electromagnetic levitation system

    Optimal Control of Fuzzy Systems with Application to Rigid Body Attitude Control

    Get PDF
    In this chapter, the author presents a theoretical result on the optimal control of nonlinear dynamic systems. In this theoretical result, the author presents the optimal control problem for nonlinear dynamic systems and shows that this problem can be solved by utilizing the dynamic programming approach and the inverse optimal approach. The author employs the dynamic programming approach to derive the Hamilton-Jacobi-Bellman (H-J-B) equation associated with the optimal control problem for nonlinear dynamic systems. Then, the author presents an analytic way to solve the H-J-B equation with the help of the inverse optimal approach. Based on the theoretical result presented in this chapter, the author establishes an optimal control design for TS-type fuzzy systems that guarantees the global asymptotic stability of an equilibrium point and the optimality with respect to a cost function and provides good convergence rates of state trajectories to an equilibrium point. The author considers the three-axis attitude stabilization problem of a rigid body to illustrate the optimal control design method for TS-type fuzzy systems. The author designs the optimal three-axis attitude stabilizing control law for a rigid body based on this optimal control design method and analyzes its control performance by numerical simulations

    Optimal control of a CSTR process

    No full text
    Designing an effective criterion and learning algorithm for find the best structure is a major problem in the control design process. In this paper, the fuzzy optimal control methodology is applied to the design of the feedback loops of an Exothermic Continuous Stirred Tank Reactor system. The objective of design process is to find an optimal structure/gains of the Robust and Optimal Takagi Sugeno Fuzzy Controller (ROFLC). The control signal thus obtained will minimize a performance index, which is a function of the tracking/regulating errors, the quantity of the energy of the control signal applied to the system, and the number of fuzzy rules. The genetic learning is proposed for constructing the ROFLC. The chromosome genes are arranged into two parts, the binary-coded part contains the control genes and the real-coded part contains the genes parameters representing the fuzzy knowledge base. The effectiveness of this chromosome formulation enables the fuzzy sets and rules to be optimally reduced. The performances of the ROFLC are compared to these found by the traditional PD controller with Genetic Optimization (PD_GO). Simulations demonstrate that the proposed ROFLC and PD_GO has successfully met the design specifications
    corecore