4 research outputs found

    Abnormal Cockpit Pilot Driving Behavior Detection Using YOLOv4 Fused Attention Mechanism

    No full text
    The abnormal behavior of cockpit pilots during the manipulation process is an important incentive for flight safety, but the complex cockpit environment limits the detection accuracy, with problems such as false detection, missed detection, and insufficient feature extraction capability. This article proposes a method of abnormal pilot driving behavior detection based on the improved YOLOv4 deep learning algorithm and by integrating an attention mechanism. Firstly, the semantic image features are extracted by running the deep neural network structure to complete the image and video recognition of pilot driving behavior. Secondly, the CBAM attention mechanism is introduced into the neural network to solve the problem of gradient disappearance during training. The CBAM mechanism includes both channel and spatial attention processes, meaning the feature extraction capability of the network can be improved. Finally, the features are extracted through the convolutional neural network to monitor the abnormal driving behavior of pilots and for example verification. The conclusion shows that the deep learning algorithm based on the improved YOLOv4 method is practical and feasible for the monitoring of the abnormal driving behavior of pilots during the flight maneuvering phase. The experimental results show that the improved YOLOv4 recognition rate is significantly higher than the unimproved algorithm, and the calling phase has a mAP of 87.35%, an accuracy of 75.76%, and a recall of 87.36%. The smoking phase has a mAP of 87.35%, an accuracy of 85.54%, and a recall of 85.54%. The conclusion shows that the deep learning algorithm based on the improved YOLOv4 method is practical and feasible for the monitoring of the abnormal driving behavior of pilots in the flight maneuvering phase. This method can quickly and accurately identify the abnormal behavior of pilots, providing an important theoretical reference for abnormal behavior detection and risk management

    Interference with Lipoprotein Maturation Sensitizes Methicillin-Resistant <b><i>Staphylococcus aureus</i></b> to Human Group IIA-Secreted Phospholipase A<sub>2</sub> and Daptomycin

    No full text
    International audienceMethicillin-resistant Staphylococcus aureus (MRSA) has been classified as a high priority pathogen by the World Health Organization underlining the high demand for new therapeutics to treat infections. Human group IIA-secreted phospholipase A2 (hGIIA) is among the most potent bactericidal proteins against Gram-positive bacteria, including S. aureus. To determine hGIIA-resistance mechanisms of MRSA, we screened the Nebraska Transposon Mutant Library using a sublethal concentration of recombinant hGIIA. We identified and confirmed the role of lspA, encoding the lipoprotein signal peptidase LspA, as a new hGIIA resistance gene in both in vitro assays and an infection model in hGIIA-transgenic mice. Increased susceptibility of the lspA mutant was associated with enhanced activity of hGIIA on the cell membrane. Moreover, lspA deletion increased susceptibility to daptomycin, a last-resort antibiotic to treat MRSA infections. MRSA wild type could be sensitized to hGIIA and daptomycin killing through exposure to LspA-specific inhibitors globomycin and myxovirescin A1. Analysis of &#x3e;26,000 S. aureus genomes showed that LspA is highly sequence-conserved, suggesting universal application of LspA inhibition. The role of LspA in hGIIA resistance was not restricted to MRSA since Streptococcus mutans and Enterococcus faecalis were also more hGIIA-susceptible after lspA deletion or LspA inhibition, respectively. Overall, our data suggest that pharmacological interference with LspA may disarm Gram-positive pathogens, including MRSA, to enhance clearance by innate host defense molecules and clinically applied antibiotics

    Interference with Lipoprotein Maturation Sensitizes Methicillin-Resistant Staphylococcus aureus to Human Group IIA-Secreted Phospholipase A2 and Daptomycin

    No full text
    Methicillin-resistant Staphylococcus aureus (MRSA) has been classified as a high priority pathogen by the World Health Organization underlining the high demand for new therapeutics to treat infections. Human group IIA-secreted phospholipase A2 (hGIIA) is among the most potent bactericidal proteins against Gram-positive bacteria, including S. aureus. To determine hGIIA-resistance mechanisms of MRSA, we screened the Nebraska Transposon Mutant Library using a sublethal concentration of recombinant hGIIA. We identified and confirmed the role of lspA, encoding the lipoprotein signal peptidase LspA, as a new hGIIA resistance gene in both in vitro assays and an infection model in hGIIA-transgenic mice. Increased susceptibility of the lspA mutant was associated with enhanced activity of hGIIA on the cell membrane. Moreover, lspA deletion increased susceptibility to daptomycin, a last-resort antibiotic to treat MRSA infections. MRSA wild type could be sensitized to hGIIA and daptomycin killing through exposure to LspA-specific inhibitors globomycin and myxovirescin A1. Analysis of &#x3e;26,000 S. aureus genomes showed that LspA is highly sequence-conserved, suggesting universal application of LspA inhibition. The role of LspA in hGIIA resistance was not restricted to MRSA since Streptococcus mutans and Enterococcus faecalis were also more hGIIA-susceptible after lspA deletion or LspA inhibition, respectively. Overall, our data suggest that pharmacological interference with LspA may disarm Gram-positive pathogens, including MRSA, to enhance clearance by innate host defense molecules and clinically applied antibiotics
    corecore