35 research outputs found

    Impact of microplastics on the in situ, high-resolution of key nutrient dynamics at the soil-water interface in rice fields

    Get PDF
    Introduction: Microplastics are characterized by their small size, widespread distribution, and durability, present a significant environmental risk. Despite their omnipresence in terrestrial and aquatic systems, the potential consequences on nutrient cycling remain under-investigated. Microplastics have emerged as a focal point of current research, presenting both a challenge and a frontier in environmental science.Methods: This study explores the effects of microplastics on the high-resolution, in situ distribution and exchange dynamics of key nutrients, nitrogen (N) and phosphorus (P), at the soil-water interface in rice paddies, utilizing the Diffusive Gradients in Thin-films (DGT) technique.Results: Our results reveal distinct spatial distribution patterns for N and P across the soil-water interface. Labile phosphorus (P) concentrations were significantly higher in the soil than in the overlying water, whereas DGT-NO3− concentrations exhibited the inverse trend. Different microplastic concentrations notably impacted DGT-NO3− (P = 0.022) and DGT-NH4+ (P = 0.033), with an increase between 27.79% and 150.68%. Moreover, different particle sizes significantly influenced NH4+. Interestingly, paddy soil acted as a “source” for labile P and a “sink” for NH4+ and NO3−.Discussion: These insights provide valuable insights into the interactions between microplastics and nutrient cycles at the soil-water interface, and assess the effects on nutrient migration and transformation. The outcomes of this study will contribute to an improved understanding of the broader ecological implications of microplastic pollution in agricultural settings. It will also provide a foundation for the development of strategies to manage and mitigate the impacts of microplastic pollution in agricultural soils, particularly in rice dominated agroecosystems

    Cdkn2a (Arf) loss drives NF1-associated atypical neurofibroma and malignant transformation

    Get PDF
    Plexiform neurofibroma (PN) tumors are a hallmark manifestation of neurofibromatosis type 1 (NF1) that arise in the Schwann cell (SC) lineage. NF1 is a common heritable cancer predisposition syndrome caused by germline mutations in the NF1 tumor suppressor, which encodes a GTPase-activating protein called neurofibromin that negatively regulates Ras proteins. Whereas most PN are clinically indolent, a subset progress to atypical neurofibromatous neoplasms of uncertain biologic potential (ANNUBP) and/or to malignant peripheral nerve sheath tumors (MPNSTs). In small clinical series, loss of 9p21.3, which includes the CDKN2A locus, has been associated with the genesis of ANNUBP. Here we show that the Cdkn2a alternate reading frame (Arf) serves as a gatekeeper tumor suppressor in mice that prevents PN progression by inducing senescence-mediated growth arrest in aberrantly proliferating Nf1−/− SC. Conditional ablation of Nf1 and Arf in the neural crest-derived SC lineage allows escape from senescence, resulting in tumors that accurately phenocopy human ANNUBP and progress to MPNST with high penetrance. This animal model will serve as a platform to study the clonal development of ANNUBP and MPNST and to identify new therapies to treat existing tumors and to prevent disease progression

    Combination of Neutrophil Count and Gensini Score as a Prognostic Marker in Patients with ACS and Uncontrolled T2DM Undergoing PCI

    Get PDF
    Background: Several biomarkers have been studied as prognostic indicators among people with diabetes and coronary artery disease (CAD). The purpose of this study was to determine the prognostic value of neutrophil counts and the Gensini score in patients with diabetes and ACS undergoing percutaneous coronary intervention (PCI). Methods: A total of 694 people with ACS and T2DM who simultaneously had elevated HBA1c received PCI. Spearman rank correlation estimates were used for correlation evaluation. Multivariate Cox regression and Kaplan-Meier analysis were used to identify characteristics associated with major adverse cardiovascular and cerebrovascular events (MACCEs) and patient survival. The effects of single- and multi-factor indices on MACCEs were evaluated through receiver operating characteristic curve analysis. Results: The Gensini score and neutrophil count significantly differed between the MACCE and non-MACCE groups among patients receiving PCI who had concomitant ACS and T2DM with elevated HBA1c (P<0.001). The Gensini score and neutrophil count were strongly associated with MACCEs (log-rank, P<0.001). The Gensini score and neutrophil count, alone or in combination, were predictors of MACCEs, according to multivariate Cox regression analysis (adjusted hazard ratio [HR], 1.005; 95% confidence interval [CI], 1.002–1.008; P=0.002; adjusted HR, 1.512; 95% CI, 1.005–2.274; P=0.047, respectively). The Gensini score was strongly associated with neutrophil count (variance inflation factor ≥ 5). Area under the curve analysis revealed that the combination of multivariate factors predicted the occurrence of MACCEs better than any single variable. Conclusion: In patients with T2DM and ACS with elevated HBA1c who underwent PCI, both the Gensini score and neutrophil count were independent predictors of outcomes. The combination of both predictors has a higher predictability

    Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK

    Get PDF
    Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies

    Case report: Cheek acupuncture exhibits an immediate effect in relieving severe pain associated with nerve compression or damage of central nervous system and its potential mechanism of action

    No full text
    Peripheral nerve compression or permanent damage of central nervous system (CNS) can trigger severe neuralgia to patients. Analgesic medicine or even surgery to remove nerve compression is commonly used for pain relief. But these treatments either are ineffective, have side-effect or can cause subsequent complications. Acupuncture, a technique that has been widely used in China and other Asian countries for thousands of years, is an alternative to relieve pain, although the mechanism of action is not fully understood. In this study, two patients who had symptoms of severe neuralgia associated with peripheral nerve compression or permanent damage/dysfunction of CNS and analgesic medicines are ineffective, underwent cheek acupuncture, a new technique established recent years by the author with the features of painless, standardization, simplicity, and precision. An immediate analgesic effect of the cheek acupuncture was observed without any side effects, and clinical remission was achieved after several sessions of treatments. It suggests that this new approach is an efficient alternative for pain relief induced by nerve impairment. The authors proposed a biological holographic model of triplet homunculi existing at the level of the local cheek, spinal cord, and cerebral cortex, to explain the immediate and accurate analgesic effect of the cheek acupuncture. These homunculi have the same structure, and synchronized sensations and actions that are mediated by afferent and efferent neurons, as the integrated human body. Therefore, the nociception and needling signals are sensed, transmitted, analyzed, and manipulated cooperatively and simultaneously among these homunculi with the subsequent pain relief in the body

    Characteristics of Corrosion Related to Ash Deposition on Boiler Heating Surface during Cofiring of Coal and Biomass

    No full text
    In order to investigate the regularity and mechanism of corrosion related to ash deposition on the boiler heating surface during cofiring of coal and biomass, the influence of fuel property, type of metal tubes (heating surface), proportion of blended biomass, and atmosphere in the furnace was studied by using the static corrosion mass gain method with the high-temperature tube furnace system. The results indicated that the effect of biomass property on ash corrosion is greater than that of coal, which was mainly due to high content of alkali metals and chlorine in biomass fuels. The corrosion resistance of metal pipes is T91 > 12CrMoVG > 20G. T91 is the most appropriate one, and it can effectively inhibit chlorine corrosion and can be used as the ideal material for the biomass-fired boiler and the biomass and coal cofired boiler. In addition, ash deposition can significantly aggravate the corrosion of metal tubes, and the degree of corrosion tends to become significant with increasing proportion of blended biomass fuels. HCl can aggravate metal corrosion, which can be inhibited by SO2

    Research on fatigue damage correction coefficient of main truss members of railway suspension bridges

    No full text
    Steel truss girder suspension bridges are gradually applied to long-span railway bridges. The fatigue damage correction factor is an important parameter for fatigue calculation, however the research on the coefficient is limited to small-span bridges. This paper analyzes force characteristics of main truss members, calculates the fatigue damage correction coefficient of truss members, and studies the influences of train loading length, annual traffic level of fatigue damage correction coefficient. The main conclusions are as follows: (1) The influence line and fatigue stress characteristics of the main truss members were studied; the stress range of members under tension or mainly under tension is analyzed, and the stress ranges and ratios between dead and live loads in main truss members are investigated. The results show that the maximum stress range of the bottom chord is 182 MPa, the ratios of dead to live loads of about 90 % of bottom chords and diagonal web members exceed the current specifications, and stress ratios of about 10 % of bottom chords and diagonal web members exceed the current specifications. (2) The fatigue damage correction coefficients of main truss members under different train loading lengths and annual traffic levels are calculated and recommended. The research results provide a basis for updating and supplementing the railway steel bridge code

    Stability Analysis and Derived Control Measures for Rock Surrounding a Roadway in a Lower Coal Seam under Concentrated Stress of a Coal Pillar

    No full text
    Numerical simulations have often been used in close-distance coal seam studies. However, numerical simulations can contain certain subjective and objective limitations, such as high randomness and excessively simplified models. In this study, close-distance coal seams were mechanically modeled based on the half-plane theory. An analytical solution of the floor stress distribution was derived and visualized using Mathematica software. The principal stress difference was regarded as a stability criterion for the rock surrounding the roadway. Then, the evolution laws of the floor principal stress difference under different factors that influence stability were further examined. Finally, stability control measures for the rock surrounding the roadway in the lower coal seam were proposed. The results indicated the following: (1) The principal stress difference of the floor considers the centerline of the upper coal pillar as a symmetry axis and transmits radially downward. The principal stress difference in the rock surrounding the roadway gradually decreases as the distance from the upper coal pillar increases and can be ranked in the following order: left rib > roof > right rib. (2) The minimum principal stress difference zones are located at the center of the left and right “spirals,” which are obliquely below the edge of the upper coal pillar. This is an ideal position for the lower coal seam roadway. (3) The shallowness of the roadway, a small stress concentration coefficient, high level of coal cohesion, large coal internal friction angle, and appropriate lengthening of the working face of the upper coal seam are conducive to the stability of the lower coal seam roadway. (4) Through bolt (cable) support, borehole pressure relief, and pregrouting measures, the roof-to-floor and rib-to-rib convergence of the 13313 return airway is significantly reduced, and the stability of the rock surrounding the roadway is substantially improved. This research provides a theoretical basis and field experience for stabilizing the lower coal seam roadways in close-distance coal seams

    Responses of Germlings to Acute Environmental Stress

    No full text
    corecore