25 research outputs found

    Evaluation of the competence of an artificial intelligence-assisted colonoscopy system in clinical practice: A post hoc analysis

    Get PDF
    BackgroundArtificial intelligence-assisted colonoscopy (AIAC) has been proposed and validated in recent years, but the effectiveness of clinic application remains unclear since it was only validated in some clinical trials rather than normal conditions. In addition, previous clinical trials were mostly concerned with colorectal polyp identification, while fewer studies are focusing on adenoma identification and polyps size measurement. In this study, we validated the effectiveness of AIAC in the clinical environment and further investigated its capacity for adenoma identification and polyps size measurement.MethodsThe information of 174 continued patients who went for coloscopy in Chongqing Rongchang District People’s hospital with detected colon polyps was retrospectively collected, and their coloscopy images were divided into three validation datasets, polyps dataset, polyps/adenomas dataset (all containing narrow band image, NBI images), and polyp size measurement dataset (images with biopsy forceps and polyps) to assess the competence of the artificial intelligence system, and compare its diagnostic ability with endoscopists with different experiences.ResultsA total of 174 patients were included, and the sensitivity of the colorectal polyp recognition model was 99.40%, the accuracy of the colorectal adenoma diagnostic model was 93.06%, which was higher than that of endoscopists, and the mean absolute error of the polyp size measurement model was 0.62 mm and the mean relative error was 10.89%, which was lower than that of endoscopists.ConclusionArtificial intelligence-assisted model demonstrated higher competence compared with endoscopists and stable diagnosis ability in clinical use

    High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis

    Get PDF
    We report the acquisition of a high-quality haploid chromosome-scale genome assembly for the first time in a tree species, Eucommia ulmoides, which is known for its rubber biosynthesis and medicinal applications. The assembly was obtained by applying PacBio and Hi–C technologies to a haploid that we specifically generated. Compared to the initial genome release, this one has significantly improved assembly quality. The scaffold N50 (53.15 MB) increased 28-fold, and the repetitive sequence content (520 Mb) increased by 158.24 Mb, whereas the number of gaps decreased from 104,772 to 128. A total of 92.87% of the 26,001 predicted protein-coding genes identified with multiple strategies were anchored to the 17 chromosomes. A new whole-genome duplication event was superimposed on the earlier γ paleohexaploidization event, and the expansion of long terminal repeats contributed greatly to the evolution of the genome. The more primitive rubber biosynthesis of this species, as opposed to that in Hevea brasiliensis, relies on the methylerythritol-phosphate pathway rather than the mevalonate pathway to synthesize isoprenyl diphosphate, as the MEP pathway operates predominantly in trans-polyisoprene-containing leaves and central peels. Chlorogenic acid biosynthesis pathway enzymes were preferentially expressed in leaves rather than in bark. This assembly with higher sequence contiguity can foster not only studies on genome structure and evolution, gene mapping, epigenetic analysis and functional genomics but also efforts to improve E. ulmoides for industrial and medical uses through genetic engineering

    N

    Get PDF

    Morphological, Transcriptome, and Hormone Analysis of Dwarfism in Tetraploids of Populus alba × P. glandulosa

    No full text
    Breeding for dwarfism is an important approach to improve lodging resistance. Here, we performed comparative analysis of the phenotype, transcriptome, and hormone contents between diploids and tetraploids of poplar 84K (Populus alba × P. glandulosa). Compared with diploids, the indole-3-acetic acid (IAA) and gibberellin (GA3) contents were increased, whereas the jasmonic acid (JA) and abscisic acid (ABA) contents were decreased in tetraploids. RNA-sequencing revealed that differentially expressed genes (DEGs) in leaves of tetraploids were mainly involved in plant hormone pathways. Most DEGs associated with IAA and GA promotion of plant growth and development were downregulated, whereas most DEGs associated with ABA and JA promotion of plant senescence were upregulated. Weighted gene co-expression network analysis indicated that certain transcription factors may be involved in the regulation of genes involved in plant hormone pathways. Thus, the altered expression of some genes in the plant hormone pathways may lead to a reduction in IAA and GA contents, as well as an elevation in ABA and JA contents, resulting in the dwarfing of tetraploids. The results show that polyploidization is a complex biological process affected by multiple plant hormone signals, and it provides a foundation for further exploration of the mechanism of tetraploids dwarfing in forest trees

    Morphological, Transcriptome, and Hormone Analysis of Dwarfism in Tetraploids of <i>Populus alba</i> × <i>P. glandulosa</i>

    No full text
    Breeding for dwarfism is an important approach to improve lodging resistance. Here, we performed comparative analysis of the phenotype, transcriptome, and hormone contents between diploids and tetraploids of poplar 84K (Populus alba × P. glandulosa). Compared with diploids, the indole-3-acetic acid (IAA) and gibberellin (GA3) contents were increased, whereas the jasmonic acid (JA) and abscisic acid (ABA) contents were decreased in tetraploids. RNA-sequencing revealed that differentially expressed genes (DEGs) in leaves of tetraploids were mainly involved in plant hormone pathways. Most DEGs associated with IAA and GA promotion of plant growth and development were downregulated, whereas most DEGs associated with ABA and JA promotion of plant senescence were upregulated. Weighted gene co-expression network analysis indicated that certain transcription factors may be involved in the regulation of genes involved in plant hormone pathways. Thus, the altered expression of some genes in the plant hormone pathways may lead to a reduction in IAA and GA contents, as well as an elevation in ABA and JA contents, resulting in the dwarfing of tetraploids. The results show that polyploidization is a complex biological process affected by multiple plant hormone signals, and it provides a foundation for further exploration of the mechanism of tetraploids dwarfing in forest trees

    Effect of Electrolytic Manganese Residue in Fly Ash-Based Cementitious Material: Hydration Behavior and Microstructure

    No full text
    Electrolytic manganese residue (EMR) is a solid waste with a main mineralogical composition of gypsum. It is generated in the production of metal manganese by the electrolysis process. In this research, EMR, fly ash, and clinker were blended to make fly ash-based cementitious material (FAC) to investigate the effect of EMR on strength properties, hydration behavior, microstructure, and environmental performance of FAC. XRD, TG, and SEM studied the hydration behavior of FAC. The pore structure and [SiO4] polymerization degree were characterized by MIP and 29Si NMR, respectively. The experimental results indicate that FAC shows excellent mechanical properties when the EMR dosage is 10%. Moderate content of sulfate provided by EMR can promote hydration reaction of FAC, and it shows a denser pore structure and higher [SiO4] polymerization degree in this case. Heavy metal ions derived from EMR can be adsorbed in the hydration products of FAC to obtain better environmental properties. This paper presents an AFt covering model for the case of excessive EMR in FAC, and it importantly provides theoretical support for the recycling of EMR in cementitious materials

    N-[4-Chloro-3-(trifluoromethyl)phenyl]-2,2-dimethylpropanamide

    No full text
    In the title compound, C12H13ClF3NO, the C&amp;#8212;C&amp;#8212;N&amp;#8212;C torsion angle between the benzene ring and the pivaloyl group is &amp;#8722;33.9&amp;#8197;(5)&amp;#176;. In the crystal, molecules are linked via N&amp;#8212;H...O hydrogen bonds to form chains running parallel to the c axis. Weak van der Waals interactions are also observed

    Diabetic HDL Is Dysfunctional in Stimulating Endothelial Cell Migration and Proliferation Due to Down Regulation of SR-BI Expression

    Get PDF
    <div><h3>Background</h3><p>Diabetic HDL had diminished capacity to stimulate endothelial cell (EC) proliferation, migration, and adhesion to extracellular matrix. The mechanism of such dysfunction is poorly understood and we therefore sought to determine the mechanistic features of diabetic HDL dysfunction.</p> <h3>Methodology/Principal Findings</h3><p>We found that the dysfunction of diabetic HDL on human umbilical vein endothelial cells (HUVECs) was associated with the down regulation of the HDL receptor protein, SR-BI. Akt-phosphorylation in HUVECs was induced in a biphasic manner by normal HDL. While diabetic HDL induced Akt phosphorylation normally after 20 minutes, the phosphorylation observed 24 hours after diabetic HDL treatment was reduced. To determine the role of SR-BI down regulation on diminished EC responses of diabetic HDL, Mouse aortic endothelial cells (MAECs) were isolated from wild type and SR-BI (−/−) mice, and treated with normal and diabetic HDL. The proliferative and migratory effects of normal HDL on wild type MAECs were greatly diminished in SR-BI (−/−) cells. In contrast, response to diabetic HDL was impaired in both types suggesting diminished effectiveness of diabetic HDL on EC proliferation and migration might be due to the down regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL’s capacity to activate Akt chronically.</p> <h3>Conclusions/Significance</h3><p>Diabetic HDL was dysfunctional in promoting EC proliferation, migration, and adhesion to matrix which was associated with the down-regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL’s capacity to activate Akt chronically.</p> </div

    Diabetic HDL is less efficient in stimulating EC proliferation. A)

    No full text
    <p>HUVECs were treated with N-HDL and D-HDL for 24 hours, and cell proliferation was measured using MTT assay. Mean ± SEM, n = 6, ***, <i>p</i><0.001 by student’s t-test. <b>B)</b> HUVECs were treated with N-HDL or G-HDL for 24 hours at apoA-I concentrations of 50 and 100 µg/ml respectively, and cell proliferation was measured using MTT assay. Although N-HDL promoted cell proliferation at 24 hours, G-HDL at 100 g/ml apoA-I decreased cell proliferation (mean ± SEM; **, <i>p</i><0.01 by student’s t-test). C) HUVECs were treated with N-HDL, D-HDL, G-HDL or Ox-HDL for 12, 24, 36, 48, 60 or 72 hours at apoA-I concentrations of 100 µg/ml and cell proliferation using BrdU proliferation assay was shown (mean ± SEM; **, p<0.01 by ANOVA and Bonferroni’s Multiple Comparison Test).</p

    Diabetic HDL is much less efficient in promoting EC migration. A)

    No full text
    <p>Scratched HUVEC monolayers were treated with media alone (C, control), N-HDL (N), or D-HDL (D) for 24 hours, and migration into the wound was photographed (100× objective lens). <b>B)</b> N-HDL or D-HDL (n = 10 each) was added to each well and transwell migration was evaluated after 8 hours. <b>C)</b> Quantification migration in the wound healing assay (n = 3, mean ± SEM; ***, <i>p</i><0.001 by ANOVA and Bonferroni’s Multiple Comparison Test). <b>D)</b> Cell migration based upon an 8 hour incubation in the transwell migration assay (n = 10, mean ± SEM, ns, <i>p</i>>0.05 and ***, <i>p</i><0.001 by ANOVA and Bonferroni’s Multiple Comparison Test) was shown. <b>E)</b> Scratched HUVEC monolayers were treated with N-HDL (N), or D-HDL (D) for 3, 6, 12 and 24 hours, and the migration into the wound was photographed (100× objective lens). <b>F)</b> The migration in wound healing assay was quantified (n = 3, mean ± SEM; ***, <i>p</i><0.001 by ANOVA and Bonferroni’s Multiple Comparison Test). <b>G)</b> Transwell migration assay was applied to HUVECs treated with media alone (C, control), N-HDL, G-HDL, or Ox-HDL at an apoA-I concentration of 100 µg/ml for 8 hours (mean ± SEM, **, <i>p</i><0.01 and ***, <i>p</i><0.001 by ANOVA test and Bonferroni’s Multiple Comparison Test).</p
    corecore