5 research outputs found

    Key protein identification by integrating protein complex information and multi-biological features

    Get PDF
    Identifying key proteins based on protein-protein interaction networks has emerged as a prominent area of research in bioinformatics. However, current methods exhibit certain limitations, such as the omission of subcellular localization information and the disregard for the impact of topological structure noise on the reliability of key protein identification. Moreover, the influence of proteins outside a complex but interacting with proteins inside the complex on complex participation tends to be overlooked. Addressing these shortcomings, this paper presents a novel method for key protein identification that integrates protein complex information with multiple biological features. This approach offers a comprehensive evaluation of protein importance by considering subcellular localization centrality, topological centrality weighted by gene ontology (GO) similarity and complex participation centrality. Experimental results, including traditional statistical metrics, jackknife methodology metric and key protein overlap or difference, demonstrate that the proposed method not only achieves higher accuracy in identifying key proteins compared to nine classical methods but also exhibits robustness across diverse protein-protein interaction networks

    Investigation of the Bearing Characteristics of Bolts on a Coal–Rock Combined Anchor Body under Different Pull-Out Rates

    No full text
    In order to reveal the influence of the pull-out rate on the load-bearing properties of the coal–rock combined anchor body, the mechanical properties and failure characteristics of a coal–rock combined anchor body under different pull-out rates (10, 20, 30, 40, 50 mm/min) were studied using the pull-out test and theoretical analysis. The results show that the bearing capacity of the bolt on the coal–rock combined anchor body improves under a dynamic load, but the load-bearing properties of the coal–rock combined anchor body are different from those of the full rock (coal) anchor body. With the increase in the pull-out rate, the maximum pull-out load of the bolt on the coal–rock combined anchor body increases first, then decreases, and finally tends to be stable. Under the condition of a low drawing rate, the bearing capacity of the coal–rock combined anchor system can be greatly improved, but when the pull-out rate exceeds 20 mm/min, the bearing capacity of the anchor system is reduced. The debonding process of the anchoring section of the coal–rock combined anchor body gradually expands from the beginning section of the anchor to the bottom of the borehole. The coal–rock combined anchor body undergoes time differential development of cracks, and the failure of the coal and rock mass occurs at different times. Its failure process can be divided into three stages: (1) the coal anchor and rock anchor act together; (2) the rock anchor acts alone; and (3) the coal anchor and rock anchor have residual action

    Investigation of the Bearing Characteristics of Bolts on a Coal–Rock Combined Anchor Body under Different Pull-Out Rates

    No full text
    In order to reveal the influence of the pull-out rate on the load-bearing properties of the coal–rock combined anchor body, the mechanical properties and failure characteristics of a coal–rock combined anchor body under different pull-out rates (10, 20, 30, 40, 50 mm/min) were studied using the pull-out test and theoretical analysis. The results show that the bearing capacity of the bolt on the coal–rock combined anchor body improves under a dynamic load, but the load-bearing properties of the coal–rock combined anchor body are different from those of the full rock (coal) anchor body. With the increase in the pull-out rate, the maximum pull-out load of the bolt on the coal–rock combined anchor body increases first, then decreases, and finally tends to be stable. Under the condition of a low drawing rate, the bearing capacity of the coal–rock combined anchor system can be greatly improved, but when the pull-out rate exceeds 20 mm/min, the bearing capacity of the anchor system is reduced. The debonding process of the anchoring section of the coal–rock combined anchor body gradually expands from the beginning section of the anchor to the bottom of the borehole. The coal–rock combined anchor body undergoes time differential development of cracks, and the failure of the coal and rock mass occurs at different times. Its failure process can be divided into three stages: (1) the coal anchor and rock anchor act together; (2) the rock anchor acts alone; and (3) the coal anchor and rock anchor have residual action

    Physical Similarity Simulation of Deformation and Failure Characteristics of Coal-Rock Rise under the Influence of Repeated Mining in Close Distance Coal Seams

    No full text
    Aiming at the problem that it is difficult to achieve accurate laying of model and precise excavation of roadways in special surrounding rock structure roadway according to conventional physical similarity simulation, which reduces the reliability of experimental results. An accurate laying of model and precise excavation of roadway method, named “labeling positioning and drawing line, presetting roadway model” (LPDLPRM), was proposed. The physical similarity simulation of deformation and failure characteristics of surrounding rock of coal-rock rise, under the influence of repeated mining in close distance coal seams, was carried out based on the method and infrared detection. The results show that the coal-rock rise in close distance coal seams was affected by repeated mining disturbances, and the surrounding rock of coal-rock rise was characterized by obvious asymmetric deformation, specific for the stress and strain near the coal pillar were higher than that of other parts, and cracks near the coal pillar were denser than other parts; when the coal seam is mined in which the coal-rock rise is located, the stress concentration of the surrounding rock near the rise was weakened by mining pressure relief in the upper coal seam; the stress concentration of the surrounding rock near the rise increases when the coal and the lower coal seam are mined, and the stress on the right side (coal pillar side) near the coal-rock rise was the most concentrated. Therefore, it is important to take measures to strengthen support near the coal pillar and to control asymmetric deformation when the coal-rock rise is influenced by repeated mining
    corecore