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Abstract: Identifying key proteins based on protein-protein interaction networks has emerged as
a prominent area of research in bioinformatics. However, current methods exhibit certain limitations,
such as the omission of subcellular localization information and the disregard for the impact of topolog-
ical structure noise on the reliability of key protein identification. Moreover, the influence of proteins
outside a complex but interacting with proteins inside the complex on complex participation tends to
be overlooked. Addressing these shortcomings, this paper presents a novel method for key protein
identification that integrates protein complex information with multiple biological features. This ap-
proach offers a comprehensive evaluation of protein importance by considering subcellular localization
centrality, topological centrality weighted by gene ontology (GO) similarity and complex participation
centrality. Experimental results, including traditional statistical metrics, jackknife methodology metric
and key protein overlap or difference, demonstrate that the proposed method not only achieves higher
accuracy in identifying key proteins compared to nine classical methods but also exhibits robustness
across diverse protein-protein interaction networks.

Keywords: Key protein; subcellular localization; GO similarity; complex participation

1. Introduction

Proteins within an organism can be classified into two categories: non key proteins and key pro-
teins. Key proteins play crucial roles throughout the cell cycle, and their absence can result in infertility,
biological dysfunction and even fatality. Furthermore, key proteins have been implicated in the patho-
genesis of various diseases [1,2]. Consequently, the identification of key proteins has become a highly
relevant research area within the field of bioinformatics [3–5]. Traditional experimental approaches
for identifying key proteins tend to be expensive, cumbersome, inefficient and limited in scope. Con-
versely, key protein identification methods based on protein-protein interaction (PPI) networks [6]
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offer a cost-effective, efficient and reliable alternative [7].
The protein-protein interaction (PPI) network exhibits a scale-free nature, characterized by uneven

internal connectivity. A small subset of nodes within the network possesses a large number of connec-
tions, often corresponding to key proteins. Consequently, topological centrality methods such as degree
centrality, information centrality, betweenness centrality, feature vector centrality, subgraph centrality,
local average connection centrality, and neighborhood centrality have been utilized for key protein
identification [1, 2, 6]. However, the accuracy of these centrality-based methods is contingent on the
quality of the PPI network, which is prone to incompleteness and includes numerous false positive and
false negative data due to experimental limitations [8]. To address this challenge, several approaches
have been proposed, combining biological characteristics with network analysis. For instance, Li et
al. introduced the PeC method [9], which integrates the topological structure of the PPI network with
gene expression profiles to identify key proteins. Peng et al. developed the UDoNC method [10],
which leverages protein-domain characteristics to identify key proteins. Shang et al. proposed the
DLAC method [11], which incorporates RNA sequence data to enhance the accuracy of key protein
prediction. Additionally, some researchers have combined biological characteristics with random walk
methods to uncover key proteins [12]. Moreover, the JDC method [13] offers a dynamic thresh-
old approach to binarize gene expression data based on PPI network information and gene expression
profiles.

Furthermore, it has been observed that key proteins tend to have a higher propensity for participation
in protein complexes compared to non-key proteins. To capitalize on this characteristic, Luo et al.
introduced the LIDC method [14], which predicts key proteins by considering the local interaction
density and internal degree of the protein complex. Building upon this work, Qin et al. enhanced the
LIDC method and proposed the LBCC method [15], which incorporates betweenness centrality to
identify key proteins. The UC method [16], on the other hand, utilizes protein frequency information
within the complex to identify key proteins. Shifting gears slightly, the Modality-DTA method [17]
presents a novel deep learning approach for drug-target interaction prediction, leveraging the multi-
modal nature of both drugs and targets to enhance prediction accuracy.

The accuracy of key protein identification based on a single biological characteristic is often com-
promised due to variations in space-time dimensions and the influence of different physical and chem-
ical environments [18]. Consequently, an increasing number of researchers are exploring the integra-
tion of multiple biological characteristics to improve the accuracy of key protein mining. For instance,
the TEO method [19] incorporates GO annotation information, gene expression data, and network
topology to identify key proteins. Similarly, the JTBC method [20] utilizes both gene expression in-
formation and domain information in the process of mining key proteins. By leveraging these diverse
biological characteristics, these methods aim to enhance the accuracy and reliability of key protein
identification.

While existing methods have made progress in key protein identification, they still face certain lim-
itations. First, these methods often overlook the crucial aspect of subcellular localization information.
In reality, the importance and criticality of proteins can vary depending on their specific subcellular
locations. Second, complex information plays a significant role in key protein identification. How-
ever, existing methods fail to account for the impact of proteins outside the complex that interact with
proteins within the complex, thereby neglecting their potential influence on complex participation.

To address the aforementioned issues, this paper presents a novel method called CIBF (protein
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complex information and multi-biological features) for identifying key proteins. CIBF is designed
to overcome the limitations of existing approaches by integrating complex information and multiple
biological characteristics. The key contributions of this method can be summarized as follows:

1) The subcellular localization information plays a crucial role in determining the key index for
various cellular locations. Then, this index is integrated with the neighborhood information of
protein nodes to determine the subcellular localization centrality of each protein. By combining
subcellular localization centrality with the protein’s surrounding network, this method accurately
assesses the protein’s significance within its specific subcellular location.

2) The method introduces an edge clustering coefficient that considers the difference in public neigh-
bor participation to quantitatively depict the interaction edge weight between proteins. Addition-
ally, the GO similarity between protein nodes is computed using GO information. Biological
characteristics are incorporated into the edge weight, enhancing its relevance. Furthermore, the
method proposes a topological centrality measure with GO similarity weighting.

3) The proposed method takes into full consideration the interaction between proteins outside the
complex and those inside the complex. It accurately determines the centrality of protein complex
participation by integrating two key factors: the in-degree of the complex for protein nodes and
the frequency of complex participation.

The identification results of key proteins in different PPI networks show that the CIBF method can
effectively identify key proteins and has fine stability.

2. Materials and method

In this paper, we present a novel method for identifying key proteins by integrating complex infor-
mation and multiple biological characteristics. Our approach involves a comprehensive evaluation of
protein nodes, considering their centrality in subcellular location, topological centrality weighted by
GO similarity, and centrality of complex participation. By examining key proteins from these diverse
dimensions, we aim to enhance the accuracy of key protein mining within the protein-protein interac-
tion (PPI) network. This integrated methodology provides a more precise and comprehensive approach
to identify key proteins.

2.1. Subcellular localization centrality

Subcellular localization information identifies the location of proteins in cells, which is an impor-
tant biological characteristic of proteins in space. By analyzing the subcellular localization distribution
of proteins, key proteins appear more frequently in some locations than in others. Based on this phe-
nomenon, subcellular localization information can be used to judge the spatial location centrality of
proteins. There are 11 subcellular localization regions, as shown in Table 1. The key coefficient of
subcellular localization region k is expressed by csl(k), and its calculation method is as follows:

csl(k) =
nep(k)

sep
(2.1)

Among them, nep(k) represents the number of key proteins in the subcellular localization region k, and
sep represents the total number of key proteins.
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Table 1 shows the distribution of key proteins in 11 subcellular localization regions and the key
coefficient of subcellular localization regions calculated by formula 2.1. It can be found that key
proteins appear more frequently in nucleus, mitochondrion, endoplasma, cytosol and so on. In view of
this, this paper calculates the spatial location centrality of protein v according to the key coefficient of
subcellular location region:

CS L(v) =

∑
v∈sl csl(k)k∈[1,11]

(
1 + d(v)k,k∈[1,11]

)
nk

(2.2)

Among them, csl(k)k∈[1,11] represents the key coefficient of protein v in 11 subcellular regions, and sl
represents the subcellular localization region, d(v)k,k∈[1,11] represents the number of neighbor proteins
of protein v in subcellular localization region k, and nk represents the number of subcellular localization
regions of protein v.

Table 1. Subcellular localization and Coefficient of subcellular localization.

Subcellular localization
region

Number of key
proteins(nep)

Key coefficient of subcellular
localization(csl)

Plasma 61 0.0475
Cytosol 228 0.1774
Endosome 26 0.0202
Endoplasmic 152 0.1183
Extracellular 2 0.0016
Golgi 65 0.0506
Mitochondrion 193 0.1502
Nucleus 783 0.6093
Peroxisome 4 0.0331
Vacuole 26 0.0202
Cytoskeleton 99 0.0770

2.2. Topological centrality of GO similarity weighted

In this paper, we propose the utilization of GO similarity as a means to introduce weighted topo-
logical centrality as an additional indicator for identifying key proteins. The gene ontology (GO)
framework is employed to describe the biological characteristics of genes and their corresponding
products. The relationship structure within GO is organized in a tree-like structure, where nodes closer
to the root encompass broader descriptions, while nodes farther away convey more specific details. Our
method calculates the GO functional similarity between proteins within the PPI network. The presence
of common GO annotations indicates a closer relationship and enhances the reliability of the edges in
the PPI network. Additionally, recognizing that the GO functional similarity can be influenced by the
number of GO annotations associated with a protein, we introduce an adjustment factor to account for
this effect. The specific calculation method of GO functional similarity is:

AGOsim (u, v) =
|GOu ∩GOv|

2

(|GOu|σu) × (|GOv|σv)
(2.3)
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GOu and GOv represent GO annotation of protein u and v, σu and σv represents the corresponding
adjustment factor, which punishes the protein with less GO annotations and rewards the protein with
more GO annotations. The calculation method is as follows:

σi=u,v =
GO
GOi

(2.4)

GO represents the average number of GO annotations in the PPI network.
In PPI network, the edge clustering coefficient (ECC) evaluates the connection strength between

two proteins from the topological structure. The calculation method is as follows:

ECC(u, v) =
z(u, v)

min (du − 1, dv − 1)
(2.5)

Among them, z(u, v) represents the number of common neighbor nodes of protein u, v, and du and dv

represent the degree value of protein u, v.
The traditional edge clustering coefficient does not consider the difference of the participation de-

gree of the public neighbors in the edge e(u, v). In this paper, the public neighbor participation
∑

pi is
introduced to calculate the participation of different public neighbors of edge e(u, v). The calculation
method is as follows:

pi =
2
di

(2.6)

i represents the common neighbor of protein u, v, and di represents the degree value of protein i itself.
From this, we can get the public neighbor difference edge clustering coefficient DnECC(u, v), which
is calculated as follows:

DnEC(u, v) =

∑
pi

min (du − 1, dv − 1)
(2.7)∑

pi represents the sum of the participation of all common neighbor proteins of edge e(u, v). The
greater the value of DnECC(u, v), the higher the connection strength between protein nodes.

The topological centrality weighted by GO similarity is obtained by fusing GO similarity and com-
mon neighbor difference edge clustering coefficient:

CBT (v) =
∑
v=v

(AGOsim (u, v) + DnECC(u, v)) (2.8)

N represents the neighbor protein set of protein v.

2.3. Complex participation centrality

Complex information helps to identify key proteins. However, key proteins may appear inside
or outside the complex. The existing methods do not consider the influence of proteins outside the
complex that interact with proteins in the complex on the participation of the complex. As shown
in Figure 1, although protein 8 is not inside complex A and B, it interacts with proteins 1 and 4
inside complex A, as well as proteins 5 and 6 inside complex B. The calculation of protein complex
participation should be considered. In view of this, this paper distinguishes the two types of proteins
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Figure 1. The relationship between protein and complex.

inside and outside the complex to more accurately evaluate the protein complex participation, and the
calculation method is as follows:

CPC(v) =

 fin

(∑
din−pc

nin

)
, v ∈ PC

dout − in
nout

, v < PC
(2.9)

din−pc represents the in-degree of protein v in the complex, nin represents the number of times protein
v appears in the complex, nout represents the number of complexes connected by protein v, dout−in in
represents the number of connections between protein v and the protein in the complex, fin represents
the frequency of protein v appearing in the complex, and its calculation method is as follows:

fin = 1 +
nin

nM
(2.10)

nM represents the maximum number of proteins appears in the complex.

2.4. Method description

In this paper, we combine subcellular localization centrality, GO similarity weighted topological
centrality and complex participation centrality with a linear weighted model to obtain a comprehensive
protein criticality evaluation method:

CIBF(v) = α
CS L(v)

MAX(CS L)
+ β

CBT (v)
MAX(CBT )

+ (1 − α − β)
CPC(v)

MAX(CPC)
(2.11)

α, β and (1-α-β) are used to adjust the contribution of each part to the protein criticality. The experiment
part will discuss value of α, β and (1-α-β).

The CIBF method is described as follows:

3. Experimental results and analysis

3.1. Experimental data

In this paper, nine representative key protein identification methods are selected: DC [21], BC
[22], SC [23], NC [24], PeC [9], LBCC [15], UC [16], TEO [19], CENC [25] making comparisons,
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Table 2. PPI networks.

PPI network Number of proteins Number of interactions Density
DIP 5093 24743 0.0018
Krogan 2674 7075 0.0020
MIPS 4546 12319 0.0012

to verify the effectiveness of the CIBF method. The experiment uses three PPI networks: DIP [26],
Krogan [27] and MIPS [28]. Details are shown in Table 2.

GO data used in the experiment comes from gene ontology database [29] and subcellular location
data from COMPARTMENTS database [30]. Key protein data for matching were integrated from
DEG [31], MIPS [32], SGD [33] and SGDP [13].

Algorithm 1: CIBF Method
Input: PPI network G=(V, E); Subcellular localization data; GO data; Protein complex data;

Parameter α, β
Output: The rank list of protein nodes

1 for i=1 to n do
2 Calculate CSL(i) by formula (2); //subcellular localization centrality
3 end
4 for each e∈E do
5 Calculate AGOsim of e by formula (3);
6 Calculate DnECC of e by formula (7);
7 end
8 for i=1 to n do
9 Calculate CBT(i) by formula (8); //topological centricity of GO similarity weighted

10 end
11 for i=1 to n do
12 Calculate CPC(i) by formula (9); //complex participation centrality
13 end
14 for each v in G do
15 Calculate CIBF(v) by formula (11); //final centrality
16 end
17 sort the protein nodes according to the value of CIBF(v) in descending order;
18 return the rank list of protein nodes;

3.2. Evaluation metrics

This paper uses three evaluation metrics:
(1) Traditional statistical metrics. This paper uses the traditional evaluation metrics as shown in

Table 3 for evaluation.
Among them, SN represents the proportion of correctly predicted key proteins in the total number

of key proteins, and SP represents the proportion of correctly predicted non-key proteins in the to-
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Table 3. Traditional evaluation metrics.

Evaluation metrics Calculation method
SN TP/(TP+FN)
SP TN/(TN+FP)
PPV TP/(TP+FP)
F–measure (2*SN*PPV)/(SN+PPV)
ACC (TP+TN)/(P+N)

tal number of non-key proteins. PPV represents the correct proportion of all key proteins predicted.
F–measure is calculated from SN and PPV, which is a comprehensive measure of SN and PPV. It can
more evenly evaluate the overall performance of different methods under SN and PPV metric. ACC is
used to evaluate the overall accuracy of each method in identifying key proteins and non-key proteins.

(2) Jackknife Methodology metric.
It is used to evaluate the identification ability and stability of different methods for key proteins.
(3) Overlap/difference analysis of key proteins.
This evaluation metric mainly determines the performance of each method by analyzing the overlap

and difference of proteins identified by different methods.

3.3. Parameter analysis

In CIBF method, α, β and (1-α-β) are used to adjust the contribution of spatial location centrality,
biological topology centrality and complex participation centrality to protein criticality. This section
analyzes the influence of different parameter settings on key protein identification performance through
experiments. When α = 1, only the spatial location centrality of protein is considered. When β = 1,
only the biological topological centrality of protein is considered. When (1-α-β) = 1, only the centrality
of protein complex participation is considered. The results on DIP, Krogan and MIPS data sets show
that when α = 0.2, β = 0.4, the number of key proteins correctly identified by CIBF method is the
largest. Therefore, in the experiments of this paper, α = 0.2, β = 0.4, (1-α-β) = 0.4.

3.4. Ablation analysis

The CIBF method involves three aspects in identifying key proteins: spatial location centrality,
biological topological centrality and complex participation centrality. Through ablation experiments,
this section demonstrates the identification ability of key proteins when only one or two factors are
considered, providing the need for each component.

Table 4–6 show the F–measure value when only a single factor is considered in DIP, Krogan and
MIPS network.

Table 4. Single factor F–measure in DIP network.

Factor F–measure
CSL(v) 0.449
CBT(v) 0.457
CPC(v) 0.460
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Table 5. Single factor F–measure in Krogan network.

Factor F–measure
CSL(v) 0.459
CBT(v) 0.472
CPC(v) 0.467

Table 6. Single factor F–measure in MIPS network.

Factor F–measure
CSL(v) 0.442
CBT(v) 0.453
CPC(v) 0.452

Table 7–9 show the changes in F–measure value when considering two factors in the DIP network,
where the horizontal and vertical coordinates represent the proportion of each factor.

Table 7. F–measure in DIP of CSL and CBT factor.

A
B

0 0.2 0.4 0.6 0.8 1.0

0 / 0.457 0.457 0.457 0.457 0.457
0.2 0.449 0.461 0.462 0.462 0.461 /

0.4 0.449 0.459 0.461 0.462 / /

0.6 0.449 0.458 0.459 / / /

0.8 0.449 0.456 / / / /

1.0 0.449 / / / / /

In Table 7, A and B represent CSL and CBT respectively.

Table 8. F–measure in DIP of CSL and CPC factor.

A
B

0 0.2 0.4 0.6 0.8 1.0

0 / 0.460 0.460 0.460 0.460 0.460
0.2 0.449 0.464 0.466 0.467 0.464 /

0.4 0.449 0.463 0.464 0.468 / /

0.6 0.449 0.462 0.466 / / /

0.8 0.449 0.459 / / / /

1.0 0.449 / / / / /

These experiments demonstrate that the three aspects involved in CIBF method are helpful in im-
proving the accuracy of key proteins identification.

3.5. Statistical metric analysis results

This section uses four statistical metrics, SN, SP, F–measure and ACC, to comprehensively evaluate
the performance of CIBF method. Table 10–12 shows the SN, SP, F–measure and ACC values of
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Table 9. F–measure in DIP of CBT and CPC factors

A
B

0 0.2 0.4 0.6 0.8 1.0

0 / 0.460 0.460 0.460 0.460 0.460
0.2 0.457 0.471 0.472 0.470 0.468 /

0.4 0.457 0.467 0.471 0.470 / /

0.6 0.457 0.466 0.465 / / /

0.8 0.457 0.464 / / / /

1.0 0.457 / / / / /

different methods in three PPI networks.

Table 10. Evaluation results of DIP network.

Method SN SP F–measure ACC
DC 0.429 0.830 0.411 0.783
BC 0.371 0.813 0.355 0.712
SC 0.400 0.822 0.359 0.725
NC 0.431 0.832 0.418 0.739
PeC 0.423 0.829 0.414 0.736
LBCC 0.466 0.841 0.454 0.755
UC 0.462 0.840 0.449 0.753
TEO 0.492 0.849 0.471 0.767
CENC 0.422 0.828 0.418 0.735
CIBF 0.500 0.851 0.481 0.770

Table 11. Evaluation results of Krogan network.

Method SN SP F–measure ACC
DC 0.406 0.754 0.408 0.652
BC 0.316 0.716 0.318 0.599
SC 0.457 0.733 0.360 0.623
NC 0.412 0.756 0.415 0.655
PeC 0.410 0.755 0.412 0.654
LBCC 0.464 0.778 0.466 0.686
UC 0.423 0.761 0.425 0.662
TEO 0.451 0.772 0.453 0.678
CENC 0.420 0.759 0.423 0.660
CIBF 0.491 0.789 0.489 0.702

It can be seen that the CIBF method has the highest accuracy in DIP, Krogan and MIPS networks,
which are 0.770, 0.702 and 0.753 respectively. In DIP network, the F–measure of CIBF method is 2.1
higher than the second method TEO. In Krogan network, F–measure of CIBF method is 4.9 higher
than the second method LBCC. In MIPS network, the CIBF method also has the highest F–measure
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Table 12. Evaluation results of MIPS network.

Method SN SP F–measure ACC
DC 0.252 0.785 0.266 0.666
BC 0.249 0.784 0.263 0.664
SC 0.139 0.752 0.146 0.615
NC 0.281 0.793 0.297 0.679
PeC 0.314 0.803 0.331 0.693
LBCC 0.430 0.836 0.448 0.745
UC 0.348 0.812 0.365 0.709
TEO 0.427 0.835 0.446 0.744
CENC 0.321 0.805 0.340 0.696
CIBF 0.448 0.841 0.466 0.753

Figure 2. Jackknife results of DIP, Krogan and MIPS networks.

and ACC.

3.6. Jackknife methodology evaluation results

The jackknife methodology metric analyzes the changes in the number of key proteins correctly
identified by each method as the number of true key proteins increases.

Figure 2 shows the jackknife methodology evaluation results of different methods in DIP, Krogan
and MIPS networks under the TOP–600 gradient. The x axis in the figure represents the cumulative
number of key proteins, and the y axis represents the number of correctly identified key proteins. From
the experimental results, with the increase of the number of key proteins, the CIBF method shows
higher accuracy and stability than other methods.

3.7. Overlap/Difference analysis results of key proteins

This section mainly analyzes the overlap/difference of key proteins between different methods un-
der the TOP600 gradient. The experimental results are shown in Table 13–15. Ms represents other
methods except CIBF method, |CIBF∩Ms| represents key proteins recognized by CIBF method and
other methods at the same time. |CIBF-Ms| represents the proportion of true key proteins recognized
by CIBF method but not by other methods. |Ms-CIBF| represents the proportion of true key proteins
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recognized by other methods but not by CIBF method. In DIP, Krogan and MIPS networks, the value
of |CIBF-Ms| is not less than 50.7, 53.7 and 44.3. This shows that CIBF method can identify key
proteins more effectively.

Table 13. Overlap/Difference of key protein on DIP network.

Method |CIBF∩Ms| |CIBF-Ms| |Ms-CIBF|
DC 205 0.6481 0.2882
BC 169 0.6566 0.2701
SC 174 0.6268 0.3201
NC 271 0.6292 0.3423
PeC 269 0.6042 0.3992
LBCC 300 0.5423 0.4742
UC 290 0.5774 0.4303
TEO 318 0.5071 0.4462
CENC 294 0.5980 0.4267

Table 14. Overlap/Difference of essential protein on Krogan network.

Method |CIBF∩Ms| |CIBF-Ms| |Ms-CIBF|
DC 234 0.6419 0.3287
BC 208 0.6653 0.3186
SC 199 0.6796 0.2750
NC 263 0.6048 0.4022
PeC 232 0.6075 0.3658
LBCC 254 0.5790 0.4860
UC 233 0.5993 0.4492
TEO 267 0.5375 0.4932
CENC 244 0.5595 0.4604

Table 15. Overlap/Difference of essential protein on Krogan network

Method |CIBF∩Ms| |CIBF-Ms| |Ms-CIBF|
DC 143 0.5378 0.2059
BC 130 0.5444 0.1890
SC 66 0.5824 0.0962
NC 141 0.5576 0.2594
PeC 176 0.4830 0.2798
LBCC 231 0.4434 0.4047
UC 193 0.4706 0.3836
TEO 207 0.4829 0.4497
CENC 197 0.4768 0.3717
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4. Discussions

4.1. Effectiveness and stability

To verify the performance of CIBF, PPI networks with various topological properties were selected
for key protein identification and compared with other methods. The experimental results show that
CIBF can identify more key proteins, and the performance of multiple evaluation indicators in different
networks (such as F–measure, ACC, etc.) also proves that the CIBF method has good stability and
effectiveness.

4.2. Limitations and deficiencies

Although CIBF method has made some progress in identifying key proteins, it still has the following
defects and deficiencies:

(1) Non-central key protein recognition. CIBF and existing methods in the identification of key
proteins are mainly based on the node centrality, while some key proteins have low centrality in the
network, so the accuracy of the recognition of such key proteins still needs to be improved;

(2) High-quality PPI network construction. The processing environment of proteins in the organ-
ism is constantly changing, which will affect the accuracy of key protein identification, so we can
build higher quality PPI network, such as the construction of dynamic PPI network fusion with fusion
temporal characteristics;

(3) More effective biological feature fusion methods. The existing methods to use protein biological
features is relatively simple, need to improve the effectiveness of biological feature fusion. Graph
representation learning performs well in the processing of graph data, which can be considered to
improve the accuracy of key protein identification.

5. Conclusion

Identification of key proteins in the PPI network is not only helpful to analyze biological tissue
structure and important to predict pathogenic genes and discover drugs. In this paper, we propose an
key protein identification method that combines complex information and multiple biological charac-
teristics. This method comprehensively evaluates the importance of proteins from the perspectives of
subcellular localization centrality, GO function centrality, and complex participation centrality of pro-
teins. The experimental results in different PPI networks show that the CIBF method can effectively
identify key proteins and has good stability.
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