241 research outputs found

    Compact Planar Sparse Array Antenna with Optimum Element Dimensions for SATCOM Ground Terminals

    Get PDF
    A novel antenna array architecture for low-cost and compact SATCOM mobile terminal is presented. Based on equal-amplitude aperiodic phased array with fewer active chain numbers, it possesses advantages including lower weight, less cost, and higher power efficiency compared to conventional periodic phased arrays. It is implemented with printed patch antenna so that it guarantees compactness. The elements position and dimensions are jointly designed, with an effective sparse array synthesis strategy that takes actual patch antenna design constraint into consideration, to obtain a maximum array aperture efficiency. Executable and practical approach for variable dimension patch antenna designing, including defect substrate element and small scale array, is introduced and utilized to implement proposed sparse array. Full-wave simulation results demonstrate the advantages of proposed array antenna as well as the effectiveness of corresponding design approach

    Learn From Zoom: Decoupled Supervised Contrastive Learning For WCE Image Classification

    Full text link
    Accurate lesion classification in Wireless Capsule Endoscopy (WCE) images is vital for early diagnosis and treatment of gastrointestinal (GI) cancers. However, this task is confronted with challenges like tiny lesions and background interference. Additionally, WCE images exhibit higher intra-class variance and inter-class similarities, adding complexity. To tackle these challenges, we propose Decoupled Supervised Contrastive Learning for WCE image classification, learning robust representations from zoomed-in WCE images generated by Saliency Augmentor. Specifically, We use uniformly down-sampled WCE images as anchors and WCE images from the same class, especially their zoomed-in images, as positives. This approach empowers the Feature Extractor to capture rich representations from various views of the same image, facilitated by Decoupled Supervised Contrastive Learning. Training a linear Classifier on these representations within 10 epochs yields an impressive 92.01% overall accuracy, surpassing the prior state-of-the-art (SOTA) by 0.72% on a blend of two publicly accessible WCE datasets. Code is available at: https://github.com/Qiukunpeng/DSCL.Comment: Accepted by ICASSP202

    Multi-Modality is All You Need for Transferable Recommender Systems

    Full text link
    ID-based Recommender Systems (RecSys), where each item is assigned a unique identifier and subsequently converted into an embedding vector, have dominated the designing of RecSys. Though prevalent, such ID-based paradigm is not suitable for developing transferable RecSys and is also susceptible to the cold-start issue. In this paper, we unleash the boundaries of the ID-based paradigm and propose a Pure Multi-Modality based Recommender system (PMMRec), which relies solely on the multi-modal contents of the items (e.g., texts and images) and learns transition patterns general enough to transfer across domains and platforms. Specifically, we design a plug-and-play framework architecture consisting of multi-modal item encoders, a fusion module, and a user encoder. To align the cross-modal item representations, we propose a novel next-item enhanced cross-modal contrastive learning objective, which is equipped with both inter- and intra-modality negative samples and explicitly incorporates the transition patterns of user behaviors into the item encoders. To ensure the robustness of user representations, we propose a novel noised item detection objective and a robustness-aware contrastive learning objective, which work together to denoise user sequences in a self-supervised manner. PMMRec is designed to be loosely coupled, so after being pre-trained on the source data, each component can be transferred alone, or in conjunction with other components, allowing PMMRec to achieve versatility under both multi-modality and single-modality transfer learning settings. Extensive experiments on 4 sources and 10 target datasets demonstrate that PMMRec surpasses the state-of-the-art recommenders in both recommendation performance and transferability. Our code and dataset is available at: https://github.com/ICDE24/PMMRec.Comment: ICDE'24 Accepte

    UPOCR: Towards Unified Pixel-Level OCR Interface

    Full text link
    In recent years, the optical character recognition (OCR) field has been proliferating with plentiful cutting-edge approaches for a wide spectrum of tasks. However, these approaches are task-specifically designed with divergent paradigms, architectures, and training strategies, which significantly increases the complexity of research and maintenance and hinders the fast deployment in applications. To this end, we propose UPOCR, a simple-yet-effective generalist model for Unified Pixel-level OCR interface. Specifically, the UPOCR unifies the paradigm of diverse OCR tasks as image-to-image transformation and the architecture as a vision Transformer (ViT)-based encoder-decoder. Learnable task prompts are introduced to push the general feature representations extracted by the encoder toward task-specific spaces, endowing the decoder with task awareness. Moreover, the model training is uniformly aimed at minimizing the discrepancy between the generated and ground-truth images regardless of the inhomogeneity among tasks. Experiments are conducted on three pixel-level OCR tasks including text removal, text segmentation, and tampered text detection. Without bells and whistles, the experimental results showcase that the proposed method can simultaneously achieve state-of-the-art performance on three tasks with a unified single model, which provides valuable strategies and insights for future research on generalist OCR models. Code will be publicly available

    Design And Hydraulic Performance Of A Novel Hydraulic Ram Pump

    Full text link
    The automatic hydraulic ram pump (hydram) is a unique device that utilizes energy from a falling quantity of water as the driving power to pump some of the water to a head much higher than the source. The hydraulic ram is structurally simple, consisting of only two moving parts: the waste valve and the delivery (check) valve. There is also an air chamber with an air or snifter valve. With a continuous flow of water, the hydram will operate automatically and continuously with no other external energy. Hydrams are suitable for small-scale water supply schemes supplying farm- houses and isolated settlements as well as in rural situations in developing countries. The authors develop a novel hydram that contains the three innovations. A new structure and shape of hydram is designed to greatly reduce its size and weight, but has the similar hydraulic performance to the conventional hydrams. Based on hard metal seal, the elastic seal is added for the waste valve and the delivery valve, respectively. The hard metal seal primarily bears the impact of the moving valve disc while the elastic seal is responsible for sealing and reducing noise from the impact of the moving valve disc against the hard metal seal. A device, consisting of a valve and a short pipe that connects the air chamber to the lifting pipe, is added to automatically adjust the gas volume upper the air chamber, so as to keep the hydram operating in a state of high efficiency. Finally, the hydraulic performance of the novel hydram is measured by the model tests

    Effect of Mild Heating Assisted Alkaline pH Shift Treatment on the Structural and Functional Properties of Porcine Liver Protein

    Get PDF
    In this study, a combined method of physical and chemical modification was used to improve the functional characteristics of porcine liver protein (PLP). PLP was modified by mild heating assisted alkaline pH shift treatment. The hydration properties, surface properties, particle size distribution, denaturation degree and molecular structure of modified PLP were measured. The results showed that heat treatment combined with a large shift in pH toward the alkaline side significantly increased the solubility and emulsifying activity of PLP, reduced the particle size while resulting in uniform size distribution, increased the absolute value of zeta potential, and decreased the free sulfhydryl content, changed the primary, secondary and tertiary structures, and increased the surface hydrophobicity. The combined treatment was superior to either treatment alone. In terms of improvements in the hydration and surface properties of PLP, heating at 50 ℃ combined with pH shift toward pH 11 was the best modification condition for PLP

    Climate change and its influence on the Karst groundwater recharge in the Jinci Spring Region, Northern China

    Get PDF
    Due to climate change and human activities over the last fifty years, the spring flow volume of karst groundwater has sharply diminished in China. Climate change is one of the critical factors that initiates a series of karst hydrogeologic and water ecological environmental problems, because the precipitation shows a decreasing trend while the temperature shows an increasing trend. The Jinci Spring is one of the largest, most famous springs in northern China. This study employed data from the Taiyuan Meteorological Station and ten precipitation stations in and around the Jinci Spring region as well as the runoff data gathered from two hydrological monitoring stations during 1960-2012. The sliding average method and the Mann-Kendall test were used to analyze the variation tendency of precipitation, temperature, and land evaporation in this area. Finally, the following were calculated: the varying pattern of the karst groundwater recharge amount and the response of the recharge amount to precipitation, land evaporation, and river runoff by quantitative analysis. The results indicated that the precipitation and land evaporation amount decreased at first and then subsequently increased. Likewise, the variation trend of the karst groundwater recharge amount in the spring region was roughly consistent with the precipitation variation pattern. In contrast, the temperature displayed an increasing trend. The climate change resulted in a reduction of the karst groundwater recharge amount, and it had the greatest influence in the 1990s, which caused the karst groundwater recharge amount to decrease 26.75 mm as compared to that of the 1960s (about 39.68% lower than that of the 1960s). The Jinci Spring had zero flow during this period. The reduction in precipitation was one of main factors that caused the cutoff of the Jinci Spring.IS
    • …
    corecore