3 research outputs found

    Stereochemistry Balances Cell Permeability and Solubility in the Naturally Derived Phepropeptin Cyclic Peptides

    No full text
    Cyclic peptide (CP) natural products provide useful model systems for mapping “beyond-Rule-of-5” (bRo5) space. We identified the phepropeptins as natural product CPs with potential cell permeability. Synthesis of the phepropeptins and epimeric analogues revealed much more rapid cellular permeability for the natural stereochemical pattern. Despite being more cell permeable, the natural compounds exhibited similar aqueous solubility as the corresponding epimers, a phenomenon explained by solvent-dependent conformational flexibility among the natural compounds. When analyzing the polarity of the solution structures we found that neither the number of hydrogen bonds nor the total polar surface area accurately represents the solvation energies of the high and low dielectric conformations. This work adds to a growing number of natural CPs whose solvent-dependent conformational behavior allows for a balance between aqueous solubility and cell permeability, highlighting structural flexibility as an important consideration in the design of molecules in bRo5 chemical space

    Nonclassical Size Dependence of Permeation Defines Bounds for Passive Adsorption of Large Drug Molecules

    No full text
    Macrocyclic peptides are considered large enough to inhibit “undruggable” targets, but the design of passively cell-permeable molecules in this space remains a challenge due to the poorly understood role of molecular size on passive membrane permeability. Using split-pool combinatorial synthesis, we constructed a library of cyclic, per-N-methlyated peptides spanning a wide range of calculated lipohilicities (0 < <i>A</i>log<i>P</i> < 8) and molecular weights (∼800 Da < MW < ∼1200 Da). Analysis by the parallel artificial membrane permeability assay revealed a steep drop-off in apparent passive permeability with increasing size in stark disagreement with current permeation models. This observation, corroborated by a set of natural products, helps define criteria for achieving permeability in larger molecular size regimes and suggests an operational cutoff, beyond which passive permeability is constrained by a sharply increasing penalty on membrane permeation

    Nonclassical Size Dependence of Permeation Defines Bounds for Passive Adsorption of Large Drug Molecules

    No full text
    Macrocyclic peptides are considered large enough to inhibit “undruggable” targets, but the design of passively cell-permeable molecules in this space remains a challenge due to the poorly understood role of molecular size on passive membrane permeability. Using split-pool combinatorial synthesis, we constructed a library of cyclic, per-N-methlyated peptides spanning a wide range of calculated lipohilicities (0 < <i>A</i>log<i>P</i> < 8) and molecular weights (∼800 Da < MW < ∼1200 Da). Analysis by the parallel artificial membrane permeability assay revealed a steep drop-off in apparent passive permeability with increasing size in stark disagreement with current permeation models. This observation, corroborated by a set of natural products, helps define criteria for achieving permeability in larger molecular size regimes and suggests an operational cutoff, beyond which passive permeability is constrained by a sharply increasing penalty on membrane permeation
    corecore