666 research outputs found

    Quench dynamics of Rydberg-dressed bosons on two-dimensional square lattices

    Get PDF
    We study dynamics of bosonic atoms on a two dimensional square lattice, where atomic interactions are long ranged with either a box or soft-core shape. The latter can be realized through laser dressing ground state atoms to electronically excited Rydberg states. When the range of interactions is equal or larger than the lattice constant, the system is governed by an extended Bose-Hubbard model. We propose a quench process by varying the atomic hopping linearly across phase boundaries of the Mott insulator-supersolid and supersolid-superfluid phases. Starting from a Mott insulator state, dynamical evolution exhibits a universal behaviour at the early stage. We numerically find that the universality is largely independent of interactions during this stage. However, dynamical evolution could be significantly altered by long-range interactions at later times. We demonstrate that density wave excitations are important below a critical quench rate, where non-universal dynamics is found. We also show that the quench dynamics can be analysed through time-of-flight images, i.e. measuring the momentum distribution and noise correlations

    MFMAN-YOLO: A Method for Detecting Pole-like Obstacles in Complex Environment

    Full text link
    In real-world traffic, there are various uncertainties and complexities in road and weather conditions. To solve the problem that the feature information of pole-like obstacles in complex environments is easily lost, resulting in low detection accuracy and low real-time performance, a multi-scale hybrid attention mechanism detection algorithm is proposed in this paper. First, the optimal transport function Monge-Kantorovich (MK) is incorporated not only to solve the problem of overlapping multiple prediction frames with optimal matching but also the MK function can be regularized to prevent model over-fitting; then, the features at different scales are up-sampled separately according to the optimized efficient multi-scale feature pyramid. Finally, the extraction of multi-scale feature space channel information is enhanced in complex environments based on the hybrid attention mechanism, which suppresses the irrelevant complex environment background information and focuses the feature information of pole-like obstacles. Meanwhile, this paper conducts real road test experiments in a variety of complex environments. The experimental results show that the detection precision, recall, and average precision of the method are 94.7%, 93.1%, and 97.4%, respectively, and the detection frame rate is 400 f/s. This research method can detect pole-like obstacles in a complex road environment in real time and accurately, which further promotes innovation and progress in the field of automatic driving.Comment: 11 page

    CORE: Cooperative Reconstruction for Multi-Agent Perception

    Full text link
    This paper presents CORE, a conceptually simple, effective and communication-efficient model for multi-agent cooperative perception. It addresses the task from a novel perspective of cooperative reconstruction, based on two key insights: 1) cooperating agents together provide a more holistic observation of the environment, and 2) the holistic observation can serve as valuable supervision to explicitly guide the model learning how to reconstruct the ideal observation based on collaboration. CORE instantiates the idea with three major components: a compressor for each agent to create more compact feature representation for efficient broadcasting, a lightweight attentive collaboration component for cross-agent message aggregation, and a reconstruction module to reconstruct the observation based on aggregated feature representations. This learning-to-reconstruct idea is task-agnostic, and offers clear and reasonable supervision to inspire more effective collaboration, eventually promoting perception tasks. We validate CORE on OPV2V, a large-scale multi-agent percetion dataset, in two tasks, i.e., 3D object detection and semantic segmentation. Results demonstrate that the model achieves state-of-the-art performance on both tasks, and is more communication-efficient.Comment: Accepted to ICCV 2023; Code: https://github.com/zllxot/COR
    corecore