143 research outputs found

    Massive Access for Future Wireless Communication Systems

    Full text link
    Multiple access technology played an important role in wireless communication in the last decades: it increases the capacity of the channel and allows different users to access the system simultaneously. However, the conventional multiple access technology, as originally designed for current human-centric wireless networks, is not scalable for future machine-centric wireless networks. Massive access (studied in the literature under such names as massive-device multiple access, unsourced massive random access, massive connectivity, massive machine-type communication, and many-access channels) exhibits a clean break with current networks by potentially supporting millions of devices in each cellular network. The tremendous growth in the number of connected devices requires a fundamental rethinking of the conventional multiple access technologies in favor of new schemes suited for massive random access. Among the many new challenges arising in this setting, the most relevant are: the fundamental limits of communication from a massive number of bursty devices transmitting simultaneously with short packets, the design of low complexity and energy-efficient massive access coding and communication schemes, efficient methods for the detection of a relatively small number of active users among a large number of potential user devices with sporadic transmission pattern, and the integration of massive access with massive MIMO and other important wireless communication technologies. This paper presents an overview of the concept of massive access wireless communication and of the contemporary research on this important topic.Comment: A short version has been accepted by IEEE Wireless Communication

    Investigating the influence of an adjustable zoned air mattress on sleep: a multinight polysomnography study

    Get PDF
    IntroductionA comfortable mattress should improve sleep quality. In this study, we sought to investigate the specific sleep parameters that could be affected by a mattress and explore any potential differences between the effects felt by each sex.MethodsA total of 20 healthy young adults (10 females and 20 males; 22.10 ± 1.25 years) participated in the experiments. A smart adjustable zoned air mattress was designed to maintain comfortable support, and an ordinary mattress was used for comparison. The participants individually spent four nights on these two mattresses in four orders for polysomnography (PSG) scoring. Sleep architecture, electroencephalogram (EEG) spectrum, and heart rate variability (HRV), which reflect the central and autonomic nervous activities, were used to compare the difference between the two mattresses.ResultsAn individual difference exited in sleep performance. The modes of influence of the mattresses were different between the sexes. The adjustable air mattress and the increase in experimental nights improved female participants' sleep efficiency, while male participants exhibited a smaller response to different mattresses. With an increasing number of experiment nights, both sexes showed increased REM and decreased N2 proportions; the N3 sleep proportion decreased in the male participants, and the heart rate decreased in both sexes. The performance of the EEG spectrum supports the above results. In addition, the adjustable air mattress weakened automatic nerve activity during N3 sleep in most participants. The female participants appeared to be more sensitive to mattresses. Experiment night was associated with psychological factors. There were differences in the results for this influence between the sexes.ConclusionThis study may shed some light on the differences between the ideal sleep environment of each sex

    ASFL-YOLOX: an adaptive spatial feature fusion and lightweight detection method for insect pests of the Papilionidae family

    Get PDF
    IntroductionInsect pests from the family Papilionidae (IPPs) are a seasonal threat to citrus orchards, causing damage to young leaves, affecting canopy formation and fruiting. Existing pest detection models used by orchard plant protection equipment lack a balance between inference speed and accuracy.MethodsTo address this issue, we propose an adaptive spatial feature fusion and lightweight detection model for IPPs, called ASFL-YOLOX. Our model includes several optimizations, such as the use of the Tanh-Softplus activation function, integration of the efficient channel attention mechanism, adoption of the adaptive spatial feature fusion module, and implementation of the soft Dlou non-maximum suppression algorithm. We also propose a structured pruning curation technique to eliminate unnecessary connections and network parameters.ResultsExperimental results demonstrate that ASFL-YOLOX outperforms previous models in terms of inference speed and accuracy. Our model shows an increase in inference speed by 29 FPS compared to YOLOv7-x, a higher mAP of approximately 10% than YOLOv7-tiny, and a faster inference frame rate on embedded platforms compared to SSD300 and Faster R-CNN. We compressed the model parameters of ASFL-YOLOX by 88.97%, reducing the number of floating point operations per second from 141.90G to 30.87G while achieving an mAP higher than 95%.DiscussionOur model can accurately and quickly detect fruit tree pest stress in unstructured orchards and is suitable for transplantation to embedded systems. This can provide technical support for pest identification and localization systems for orchard plant protection equipment
    corecore