21 research outputs found

    Development and validation of nomogram models to predict radiotherapy or chemotherapy benefit in stage III/IV gastric adenocarcinoma with surgery

    Get PDF
    ObjectivesThe advanced gastric adenocarcinoma (GAC) patients (stage III/IV) with surgery may have inconsistent prognoses due to different demographic and clinicopathological factors. In this retrospective study, we developed clinical prediction models for estimating the overall survival (OS) and cancer-specific survival (CSS) in advanced GAC patients with surgeryMethodsA retrospective analysis was conducted using the Surveillance, Epidemiology, and End Results (SEER) database. The total population from 2004 to 2015 was divided into four levels according to age, of which 179 were younger than 45 years old, 695 were 45-59 years old, 1064 were 60-74 years old, and 708 were older than 75 years old. There were 1,712 men and 934 women. Univariate and multivariate Cox regression analyses were performed to identify prognostic factors for OS and CSS. Nomograms were constructed to predict the 1-, 3-, and 5-year OS and CSS. The models’ calibration and discrimination efficiency were validated. Discrimination and accuracy were evaluated using the consistency index, area under the receiver operating characteristic curve, and calibration plots; and clinical usefulness was assessed using decision curve analysis. Cross-validation was also conducted to evaluate the accuracy and stability of the models. Prognostic factors identified by Cox regression were analyzed using Kaplan-Meier survival analysis.ResultsA total of 2,646 patients were included in our OS study. Age, primary site, differentiation grade, AJCC 6th_TNM stage, chemotherapy, radiotherapy, and number of regional nodes examined were identified as prognostic factors for OS in advanced GAC patients with surgery (P < 0.05). A total of 2,369 patients were included in our CSS study. Age, primary site, differentiation grade, AJCC 6th_TNM stage, chemotherapy, radiotherapy, and number of regional nodes examined were identified as risk factors for CSS in these patients (P < 0.05). These factors were used to construct the nomogram to predict the 1-, 3-, and 5-year OS and CSS of advanced GAC patients with surgery. The consistency index and area under the receiver operating characteristic curve demonstrated that the models effectively differentiated between events and nonevents. The calibration plots for 1-, 3-, and 5-year OS and CSS probability showed good consistence between the predicted and the actual events. The decision curve analysis indicated that the nomogram had higher clinical predictive value and more significant net gain than AJCC 6th_TNM stage in predicting OS and CSS of advanced GAC patients with surgery. Cross-validation also revealed good accuracy and stability of the models.ConclusionThe developed predictive models provided available prognostic estimates for advanced GAC patients with surgery. Our findings suggested that both OS and CSS can benefit from chemotherapy or radiotherapy in these patients

    Preparation and Potential Applications of Super Paramagnetic Nano-Fe3O4

    No full text
    Ferroferric oxide nanoparticle (denoted as Nano-Fe3O4) has low toxicity and is biocompatible, with a small particle size and a relatively high surface area. It has a wide range of applications in many fields such as biology, chemistry, environmental science and medicine. Because of its superparamagnetic properties, easy modification and function, it has become an important material for addressing a number of specific tasks. For example, it includes targeted drug delivery nuclear magnetic resonance (NMR) imaging in biomedical applications and in environmental remediation of pollutants. Few articles describe the preparation and modification of Nano-Fe3O4 in detail. We present an evaluation of preparation methodologies, as the quality of material produced plays an important role in its successful application. For example, with modification of Nano-Fe3O4, the surface activation energy is reduced and good dispersion is obtained

    Effects of Typical Antimicrobials on Growth Performance, Morphology and Antimicrobial Residues of Mung Bean Sprouts

    No full text
    Antimicrobials may be used to inhibit the growth of micro-organisms in the cultivation of mung bean sprouts, but the effects on mung bean sprouts are unclear. In the present study, the growth performance, morphology, antimicrobial effect and antimicrobial residues of mung bean sprouts cultivated in typical antimicrobial solutions were investigated. A screening of antimicrobial residues in thick-bud and rootless mung bean sprouts from local markets showed that the positive ratios of chloramphenicol, enrofloxacin, and furazolidone were 2.78%, 22.22%, and 13.89%, respectively. The cultivating experiment indicated that the production of mung bean sprouts in antimicrobial groups was significantly reduced over 96 h (p < 0.05). The bud and root length of mung bean sprouts in enrofloxacin, olaquindox, doxycycline and furazolidone groups were significantly shortened (p < 0.05), which cultivated thick-bud and rootless mung bean sprouts similar to the 6-benzyl-adenine group. Furthermore, linear regression analysis showed average optical density of 450 nm in circulating water and average production had no obvious correlation in mung bean sprouts (p > 0.05). Antimicrobial residues were found in both mung bean sprouts and circulating water. These novel findings reveal that the antimicrobials could cultivate thick-bud and rootless mung bean sprouts due to their toxicity. This study also proposed a new question regarding the abuse of antimicrobials in fast-growing vegetables, which could be a potential food safety issue

    Recycling of Waste Sludge: Preparation and Application of Sludge-Based Activated Carbon

    No full text
    With the rapidly increasing industrial and agricultural development, a large amount of sludge has been produced from much water treatment. Sludge treatment has become one of the most important environmental issues. Resource utilization of sludge is one of the important efficient methods for solving this issue. Sludge-based activated carbon (SBAC) materials have high adsorption performance and can effectively remove environmental pollutants including typical organic matter and heavy metals through physical and chemical processes. Therefore, developing efficient SBAC materials is important and valuable. At present, preparation, modification, and application of SBAC materials have gained widespread attention. This paper provides a review of the research on SBAC preparation and modification and its utilization in removing environmental pollutants. It included the following topics present in this review: conventional and new methods for preparation of SBAC were clearly present; the effective methods for improving SBAC performance via physical and chemical modification were reviewed; and the correlation of their physic-chemical properties of SBAC with pollutants’ removal efficiencies as well as the removal mechanisms was revealed. SBAC has a better adsorption performance than commercial activated carbon in some aspects. Furthermore, it is a cost-effective technique and has a wide range of raw materials. However, there are still some drawbacks to its research; thus, some suggestions for further research were given in this review

    Magnetic Metal–Organic Framework Enhanced Inorganic Coagulation for Water Purification

    No full text
    Green water treatment technologies are widely popular, and magnetic coagulation is one of the most popular methods and has been successfully applied in industry. Among them, magnetic seeds are crucial for the flocculation of contaminants. The objective of this work was to investigate the potential of magnetic metal–organic frameworks (MMOFs) as a seed in assisting polymeric ferric sulfate (PFS) flocculant, specifically exploring their applicability in algal-contaminated water. Scanning electron microscopy, transmission electron microscopy, energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, ferrite timing spectroscopy, and flocculation tests were used to characterize the structure and flocculation properties of MMOFs and PFS (PFS-MMOFs) composites, highlighting the stability of magnetic seed MMOFs and the flocculation effect of the composites. The results show that MMOFs have good dispersion and stability in acidic PFS solutions, which are favorable for engineering applications. MMOFs and PFS are bonded by hydrogen bonds, which enhance the polarity and dispersion of MMOFs, as well as the molecular chains of PFS. In the presence of MMOFs, it affected the distribution of iron species in the PFS, which means that the performance of coagulation may be changed. Coagulation with PFS-MMOFs was effective under different hydraulic conditions. It also showed better results than PFS in terms of dissolved organic carbon (DOC) removal and ultraviolet absorption value at 254 nm (UV254). In addition, the PFS-MMOFs in algal-infested waters were superior to the PFS. Overall, the findings tested in this study indicated that MMOFs are good magnetic seeds for remediation of water pollution in conjunction with PFS, potentially enhancing conventional coagulation

    Sup_Fig-1 – Supplemental material for Prognostic significance of pretreatment plasma fibrinogen level in patients with digestive system tumors: a meta-analysis

    No full text
    <p>Supplemental material, Sup_Fig-1 for Prognostic significance of pretreatment plasma fibrinogen level in patients with digestive system tumors: a meta-analysis by Rui Ji, Qian Ren, Suyang Bai, Yuping Wang and Yongning Zhou in The International Journal of Biological Markers</p

    Sup_Fig-5 – Supplemental material for Prognostic significance of pretreatment plasma fibrinogen level in patients with digestive system tumors: a meta-analysis

    No full text
    <p>Supplemental material, Sup_Fig-5 for Prognostic significance of pretreatment plasma fibrinogen level in patients with digestive system tumors: a meta-analysis by Rui Ji, Qian Ren, Suyang Bai, Yuping Wang and Yongning Zhou in The International Journal of Biological Markers</p
    corecore