14 research outputs found

    Co-reductive fabrication of carbon nanodots with high quantum yield for bioimaging of bacteria

    Get PDF
    A simple and straightforward synthetic approach for carbon nanodots (C-dots) is proposed. The strategy is based on a one-step hydrothermal chemical reduction with thiourea and urea, leading to high quantum yield C-dots. The obtained C-dots are well-dispersed with a uniform size and a graphite-like structure. A synergistic reduction mechanism was investigated using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The findings show that using both thiourea and urea during the one-pot synthesis enhances the luminescence of the generated C-dots. Moreover, the prepared C-dots have a high distribution of functional groups on their surface. In this work, C-dots proved to be a suitable nanomaterial for imaging of bacteria and exhibit potential for application in bioimaging thanks to their low cytotoxicity

    Application of immune checkpoint inhibitors for resectable gastric/gastroesophageal cancer

    Get PDF
    Gastric/gastroesophageal junction (G/GEJ) cancer represents a significant global health challenge. Radical surgery remains the cornerstone of treatment for resectable G/GEJ cancer. Supported by robust evidence from multiple clinical studies, therapeutic approaches, including adjuvant chemotherapy or chemoradiation, and perioperative chemotherapy, are generally recommended to reduce the risk of recurrence and enhance long-term survival outcomes post-surgery. In recent years, immune checkpoint inhibitors (ICIs) have altered the landscape of systemic treatment for advanced or metastatic G/GEJ cancer, becoming the standard first-line therapy for specific patients. Consequently, exploring the efficacy of ICIs in the adjuvant or neoadjuvant setting for resectable G/GEJ cancer is worthwhile. This review summarizes the current advances in the application of ICIs for resectable G/GEJ cancer

    Suppression of Jasmonic Acid-Dependent Defense in Cotton Plant by the Mealybug Phenacoccus solenopsis

    Get PDF
    The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA), salicylic acid (SA), and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs

    Three new Penicillium species isolated from the tidal flats of China

    No full text
    During a survey of culturable fungi in the coastal areas of China, three new species of Penicillium sect. Lanata-Divaricata were discovered and studied with a polyphasic taxonomic approach, and then named as P. donggangicum sp. nov. (ex-type AS3.15900T = LN5H1-4), P. hepuense sp. nov. (ex-type AS3.16039T = TT2-4X3, AS3.16040 = TT2-6X3) and P. jiaozhouwanicum sp. nov. (ex-type AS3.16038T = 0801H2-2, AS3.16207 = ZZ2-9-3). In morphology, P. donggangicum is unique in showing light yellow sclerotia and mycelium, sparse sporulation, restricted growth at 37 °C, irregular conidiophores, intercalary phialides and metulae, and pyriform to subspherical conidia. P. hepuense is distinguished by the fast growth on CYA and YES and slow growth on MEA at 25 °C, weak or absence of growth at 37 °C, biverticillate and monoverticillate penicilli, and ellipsoidal conidia. P. jiaozhouwanicum is characterized by abundant grayish-green conidia en masse and moderate growth at 37 °C, the appressed biverticillate penicilli and fusiform, smooth-walled conidia. These three novelties were further confirmed by the phylogenetic analyses based on either the combined BenA-CaM-Rpb2 or the individual BenA, CaM, Rpb2 and internal transcribed spacer (ITS) sequences

    Integrated Energy Planning for Near-Zero Carbon Emission Demonstration District in Urban Areas: A Case Study of Meishan District in Ningbo, China

    No full text
    Reasonable regional integrated energy planning is an important prerequisite for the construction of a Near-Zero Carbon Emission Demonstration District (NCEDD). An integrated energy planning scheme that is based on a three-step planning method with the objective of achieving an NCEDD is proposed in this paper. First, the planning objectives should be determined. After that, the planning strategies should be established. Finally, the planning approaches should be proposed according to the previously determined objectives and strategies. A case study considering the integrated energy planning of the Meishan International Near-Zero Carbon Emission Demonstration District (MINCEDD) is investigated to explain the planning method. In addition, the planning results, which are indicated as indexes, are explained, analyzed, and compared to the ones of other districts. The indexes include a proportion of renewable energy to primary energy (73% by 2030 and 108% by 2050), a proportion of renewable power to total power consumption (98% by 2030 and 111% by 2050), and CO2 emission reduction rates (70% by 2030 and 100% by 2050) and are more advanced than other districts in China. This planning scheme and method can provide a reference for the integrated energy planning of NCEDDs in developed urban areas

    Measurement of differential and double-differential neutron emission cross-sections for

    No full text
    The secondary neutron emission differential and double-differential cross sections (DX and DDXs) of n + 9Be have been measured at the neutron energy of 21.94MeV using the multi-detector fast neutron time-of-flight (TOF) spectrometer. The data was derived by comparing the measured TOF spectra with detailed Monte Carlo simulation, and corrected with n-p scattering cross section. Meanwhile, theoretical calculations based on the Hauser-Feshbach and exciton model have been performed to compare with experimental data. Measured differential cross sections were also compared with other measurements. It was found that the experimental results were in agreement with other measurements and theoretical calculations, while discrepancies were also present in the whole energy region and at some angles

    Polymer-Grafted Nanoparticles with Precisely Controlled Structures

    No full text
    Polymer-tethered nanoparticles with different geometric shapes are very useful fillers of polymer nanocomposites. Herein, a universal approach for the fabrication of such nanoparticles with precisely controlled shape and composition is reported. By microphase separation of poly­(3-(triethoxysilyl)­propyl methacrylate)-<i>block</i>-polystyrene (PTEPM-<i>b</i>-PS) in the presence of oligomers, o-TEPM (oT) and/or o-S (oS), followed by cross-linking and dispersion in PS solvent, precisely tailored PS-grafted nanoparticles were prepared. These particles include those with varied shapes but identical PS shells, particles with varied core sizes but the same PS shell, and particles with fixed shapes but varied PS shells. These particles are ideal model nanofillers to study the dynamics and reinforced mechanism of polymer nanocomposites
    corecore