93 research outputs found

    Market and strategic analysis of opinion aggregators

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design and Management Program, 2008.Includes bibliographical references (leaves 101-103).This thesis studies an emerging web phenomenon - online opinion aggregator. The thesis first defines what an opinion aggregator is and then applies a holistic framework to analyze the opinion aggregator to understand its key characteristics. The research then zooms in on one of the most popular opinion aggregators, the product review aggregator, to understand its market opportunities, enabling technologies, and business models. The author samples nine product review aggregators based on the content type, the aggregation method, and the relationship with customers. An experiment of comparing product review ratings is also conducted to reveal issues and challenges faced by the product review aggregators.The conclusion of this research is that most review aggregators are still in their startup stage in which they are accumulating product review content and building a bigger user base. Many key enabling technologies such as natural language parsing and web text mining are still in the early stage of the technology evolution. Most of product review aggregators rely on advertising to sustain their businesses. Although aggregating product reviews is a good starting point, an aggregator needs to move towards a more comprehensive product research platform in order to grow its business.This research can be used by product review aggregators that want to gain a holistic understanding of the opinion aggregation eco-system and want to formalize their business strategies. The research also offers insights into the critical success factors of product review aggregators and can be helpful for anyone who wants to start a review aggregation-based business. The market researchers can benefit from this research with a better understanding of opinion aggregators and opportunities presented to the aggregators.by Yongjiang (Jerry) Sun.S.M

    The effect of cooling rate on the wear performance of a ZrCuAlAg bulk metallic glass

    Get PDF
    In the present work, the local atomic ordering and the wear performance of ZrCuAlAg bulk metallic glass (BMG) samples with different diameters have been studied using transmission electron microscopy (TEM) plus autocorrelation function analysis, and pin-on-disc dry sliding wear experiments. Differential scanning calorimetry and TEM studies show that smaller diameter BMG sample has higher free volume and less local atomic ordering. The wear experiments demonstrate that with the same chemical composition, the smaller BMG sample exhibits higher coefficient of friction, higher wear rate, and rougher worn surface than those of the larger ones. Compared with larger BMG sample, the faster cooling rate of the smaller sample results in looser atomic configuration with more free volume, which facilitates the formation of the shear bands, and thus leads to larger plasticity and lower wear resistance. The results provide more quantitative understanding on the relationship among the cooling rate, the local atomic ordering, and the wear performance of BMGs

    Wear Behaviors of a Ti-Based Bulk Metallic Glass at Elevated Temperatures

    Get PDF
    Bulk metallic glasses (BMGs) often offer excellent physical, chemical, and mechanical properties such as high strength, high hardness, and good wear/corrosion resistance, stemming from their unique atomic configuration. These properties enable them to be a potential engineering material in a range of industrial applications. However, the wear behaviors must be considered in structural applications. Here, the wear tests of a TiZrNiCuBe bulk metallic glass at high temperatures were carried out. As the testing temperature increases, the wear rate of the studied BMG sample gradually decreases and the sample surface becomes smoother. Meanwhile, a higher applied normal load causes a higher wear rate. The wear mechanism evolves from the abrasive to adhesive mode with increase in the testing temperature. The results obtained here could shed more insights into the deformation mechanism of BMGs and thus extend their industrial uses in high-temperature environments

    High-throughput estimation of plant height and above-ground biomass of cotton using digital image analysis and Canopeo

    Get PDF
    Plant height and above-ground biomass are important growth parameters that affect crop yield. Efficient and non-destructive technologies of crop phenotypic monitoring play crucial roles in intelligent farmland management. However, the feasibility of using these technologies to estimate cotton plant height and above-ground biomass has not been determined. This study proposed a low cost and high-throughput imaging method combined with Canopeo to extract the percentages of green color from high-definition digital images and establish a model to estimate the cotton plant height and above-ground biomass. The plant height and above-ground biomass field trials were conducted at two levels of irrigation (soil water content 70% ± 5% and 40%−45%, respectively) using 80 cotton genotypes. The linear fitting performed well across the different cotton genotypes (PH, R2 = 0.9829; RMSE = 2.4 cm; NRMSE = 11% and AGB, R2 = 0.9609; RMSE = 0.6 g / plant; and NRMSE = 5%), and two levels of irrigation (PH, R2 = 0.9604; RMSE = 2.15 cm; NRMSE = 6% and AGB, R2 = 0.9650; RMSE = 4.51 g/plant; and NRMSE = 17%). All reached a higher fitting degree. Additionally, the most comprehensive model to estimate the cotton plant height and above-ground biomass (Y = 0.4832*X + 11.04; Y = 0.4621*X − 0.3591) was determined using a simple linear regression modeling method. The percentages of green color positively correlated with plant height and above-ground biomass, and each model exhibited higher accuracy (R2 ≥ 0.8392, RMSE ≤ 0.0158, NRMSE ≤ 0.06%). Combining a high-definition digital camera with Canopeo enables the prediction of crop growth in the field. The simple linear regression modeling method and the most comprehensive model enable the rapid estimation of the cotton plant height and above-ground biomass. This method can also be used as a baseline to measure other important crop phenotypes

    Long-term nitrogen fertilizer management for enhancing use efficiency and sustainable cotton (Gossypium hirsutum L.)

    Get PDF
    Optimal management of nitrogen fertilizer profoundly impacts sustainable development by influencing nitrogen use efficiency (NUE) and seed cotton yield. However, the effect of long-term gradient nitrogen application on the sandy loam soil is unclear. Therefore, we conducted an 8-year field study (2014–2021) using six nitrogen levels: 0 kg/hm2 (N0), 75 kg/hm2 (N1), 150 kg/hm2 (N2), 225 kg/hm2 (N3), 300 kg/hm2 (N4), and 375 kg/hm2 (N5). The experiment showed that 1) Although nitrogen application had insignificantly affected basic soil fertility, the soil total nitrogen (STN) content had decreased by 5.71%–19.67%, 6.67%–16.98%, and 13.64%–21.74% at 0-cm–20-cm, 20-cm–40-cm, and 40-cm–60-cm soil layers, respectively. 2) The reproductive organs of N3 plants showed the highest nitrogen accumulation and dry matter accumulation in both years. Increasing the nitrogen application rate gradually decreased the dry matter allocation ratio to the reproductive organs. 3) The boll number per unit area of N3 was the largest among all treatments in both years. On sandy loam, the most optional nitrogen rate was 190 kg/hm2–270 kg/hm2 for high seed cotton yield with minimal nitrogen loss and reduced soil environment pollution

    Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain

    Get PDF
    Imaging techniques based on optical contrast analysis can be used to visualize dynamic and functional properties of the nervous system via optical signals resulting from changes in blood volume, oxygen consumption and cellular swelling associated with brain physiology and pathology. Here we report in vivo noninvasive transdermal and transcranial imaging of the structure and function of rat brains by means of laser-induced photoacoustic tomography (PAT). The advantage of PAT over pure optical imaging is that it retains intrinsic optical contrast characteristics while taking advantage of the diffraction-limited high spatial resolution of ultrasound. We accurately mapped rat brain structures, with and without lesions, and functional cerebral hemodynamic changes in cortical blood vessels around the whisker-barrel cortex in response to whisker stimulation. We also imaged hyperoxia- and hypoxia-induced cerebral hemodynamic changes. This neuroimaging modality holds promise for applications in neurophysiology, neuropathology and neurotherapy
    corecore