19 research outputs found

    Optic neuritis associated with seronegative autoimmune encephalitis: a case report

    Get PDF
    Optic neuritis is an inflammatory demyelinating disorder that primarily affects the optic nerve and is often associated with multiple sclerosis. While it is rare for optic neuritis to be accompanied by autoimmune encephalitis, it can occur in some cases. A 65-year-old woman with bipolar disorder presented with a progressively altered mentality. Magnetic resonance imaging of the brain showed no definite abnormal findings. Electroencephalography revealed nonconvulsive status epilepticus. Cerebrospinal fluid study and autoimmune and paraneoplastic encephalitis antibodies were negative. The patient was diagnosed with seronegative autoimmune encephalitis and treated with methylprednisolone, intravenous immunoglobulin, and rituximab. Her condition gradually improved except for persistent blindness on the left side. This case highlights the importance of considering autoimmune encephalitis even in the absence of identifiable pathogenic antibodies when clinical manifestations and response to immunotherapy support such a diagnosis

    Comparison of Surgical Outcomes of Laparoscopic Glue and Laparoscopic Suture Hernioplasty in Pediatric Female Inguinal Hernia

    No full text
    This study aimed to report the surgical outcomes of laparoscopic glue hernioplasty (LGH) compared with conventional laparoscopic suture hernioplasty (LSH) in pediatric female inguinal hernia repair. We retrospectively analyzed 465 female pediatric patients who underwent laparoscopic inguinal hernia repair between January 2013 and December 2020. LGH and LSH were performed in 95 and 370 cases, respectively. Surgical outcomes (length of hospital stay, operative time, complications, and recurrences) were compared between the LGH and LSH groups. We found that the operation times for bilateral hernia repair were shorter in the LGH group (LGH: 35.5 ± 8.2 min, LSH: 45.2 ± 11.6 min; p < 0.001). No significant differences in complications or recurrences were observed between the two groups during the follow-up period. Our findings suggest that LGH is a feasible and easily applied surgical technique for the treatment of pediatric female inguinal hernia

    Synergistic effects of gelatin and nanotopographical patterns on biomedical PCL patches for enhanced mechanical and adhesion properties

    No full text
    Biomedical patches have been known as important biomaterial-based medical devices for the clinical treatment of tissue and organ diseases. Inspired by the extracellular matrix-like aligned nanotopographical pattern as well as the unique physical and biocompatible properties of gelatin, we developed strength-enhanced biomedical patches by coating gelatin onto the nanopatterned surface of polycaprolactone (PCL). The relative contributions of the nanotopographical pattern (physical factor) and gelatin coating (chemical factor) in enhancing the mechanical and adhesive properties of PCL were quantitatively investigated. The nanotopographical pattern increased the surface area of PCL, allowing more gelatin to be coated on its surface. The biomedical patch made from gelatin-coated nanopatterned PCL showed strong mechanical and adhesive properties (tensile strength: ~14.5 MPa; Young's modulus: ~60.2 MPa; and normal and shear adhesive forces: ~1.81 N/cm2 and ~352.3 kPa) as well as good biocompatibility. Although the nanotopographical pattern or gelatin coating alone could enhance these physical properties of PCL in both dry and wet environmental conditions, both factors in combination further strengthened the properties, indicating the importance of synergistic cues in driving the mechanical behavior of biomedical materials. This strength-enhanced biomedical patch will be especially useful for the treatment of tissues such as cartilage, tendon, and bone

    Self-assembling β-glucan nanomedicine for the delivery of siRNA

    No full text
    We aimed to design and manufacture a transporter capable of delivering small interfering RNAs (siRNAs) into the skin without causing any damage. β-glucans are unique chiral polysaccharides with well-defined immunological properties and supramolecular wrapping ability. However, the chiral properties of these polymers have hardly been applied in drug delivery systems. In this study, β-glucan nanoparticles were designed and manufactured to deliver genetic material to the target cells. The β-glucan molecules were self-assembled with an siRNA into nanoparticles of 300–400 nm in diameter via a conformational transition process, in order to construct a gene delivery system. The assembled gene nanocarriers were associated with high gene-loading ability. The expression and efficiency of siRNA were verified after its delivery via β-glucan. Our results provide evidence that β-glucan nanoparticles can be effectively used to deliver siRNA into the cells.Published versio

    Selective Removal of Water Generated during Hydrogenotrophic Methanation from Culture Medium Using Membrane Distillation

    No full text
    Methane production was carried out in two different types of reactors using a thermophilic and hydrogenotrophic methanogen, Methanothermobacter sp. KEPCO-1, which converts hydrogen and carbon dioxide into methane at 60 °C. The two reactors used for methane production were stirred-tank reactor (ST) and a bubble column reactor (BC), which were selected because they can provide a good comparison between the medium agitation type and gas–liquid mass transfer. The specific growth rate of KEPCO-1 in the ST and BC was 0.03 h−1 and 0.07 h−1, respectively. The methane conversion rate increased to 77.8 L/L/d in the ST and 19.8 L/L/d in the BC. To prevent the dilution of nutrients in the medium by the water generated during the hydrogenotrophic methanation reaction, a membrane distillation (MD) process was applied to selectively remove water from the culture medium. The MD process selectively removed only water from the medium. Fouling by KEPCO-1 had a negligible effect on flux and showed a high removal performance flux of 16.3 ± 3.1 L/m2/h. By operating the MD process in conjunction with the hydrogenotrophic methanation process, it is possible to prevent the dilution of the nutrients in the medium by the water generated during the methanation process, thereby maintaining stable microbial growth and methanation activity

    Practice patterns and clinical significance of use of capsule endoscopy in suspected and established Crohn's disease

    No full text
    Background/Aims: Although the role of capsule endoscopy (CE) in Crohn's disease (CD) has expanded, CE is not used routinely for diagnosing and evaluating CD in Korea. We aimed to investigate current patterns of practice and evaluate the clinical significance of the use of CE in CD in Korean patients.Methods: Among 651 CE procedures performed for various indications, we retrospectively analyzed the medical records of patients who underwent CE in 57 cases of suspected CD (sCD) and 14 cases of established CD (eCD).Results: In the sCD group, CE was most commonly used for the initial diagnosis of CD (54.4%). Capsule retention was found in only 1 patient in the eCD group (1/71, 1.4%). In the sCD group, 28.1% of patients were diagnosed with CD on the basis of CE findings; other diseases diagnosed included tuberculous enteritis (7.0%), non-steroidal anti-inflammatory drug-induced enteropathy (5.3%), and other enteritis (17.5%). Only 11.5% of patients with eCD (14/122) underwent CE. The indication for CE in the 14 patients with eCD was to assess disease extent and activity. The overall diagnostic yield of CE was 59.7%. Therapeutic strategies were changed in 70.2% of patients in the sCD group and 50% of those in the eCD group based on CE findings.Conclusions: In clinical practice, CE was most commonly indicated for the initial diagnosis of CD and was not generally performed in patients with eCD. CE appears to be an effective diagnostic modality for evaluating sCD and is useful for determining therapeutic strategies for patients with sCD and those with eCD
    corecore