80 research outputs found

    Rapid and visual identification of HIV-1 using reverse transcription loop-mediated isothermal amplification integrated with a gold nanoparticle-based lateral flow assay platform

    Get PDF
    Human immunodeficiency virus type one (HIV-1) infection remains a major public health problem worldwide. Early diagnosis of HIV-1 is crucial to treat and control this infection effectively. Here, for the first time, we reported a novel molecular diagnostic assay called reverse transcription loop-mediated isothermal amplification combined with a visual gold nanoparticle-based lateral flow assay (RT-LAMP-AuNPs-LFA), which we devised for rapid, specific, sensitive, and visual identification of HIV-1. The unique LAMP primers were successfully designed based on the pol gene from the major HIV-1 genotypes CRF01_AE, CRF07_BC, CRF08_BC, and subtype B, which are prevalent in China. The optimal HIV-1-RT-LAMP-AuNPs-LFA reaction conditions were determined to be 68°C for 35 min. The detection procedure, including crude genomic RNA isolation (approximately 5 min), RT-LAMP amplification (35 min), and visual result readout (<2 min), can be completed within 45 min. Our assay has a detection limit of 20 copies per test, and we did not observe any cross-reactivity with any other pathogen in our testing. Hence, our preliminary results indicated that the HIV-1-RT-LAMP-AuNPs-LFA assay can potentially serve as a useful point-of-care diagnostic tool for HIV-1 detection in a clinical setting

    Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians

    Get PDF
    Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases

    Investigation of SrB 4

    No full text

    Adjuvant chemotherapy or no adjuvant chemotherapy? A prediction model for the risk stratification of recurrence or metastasis of nasopharyngeal carcinoma combining MRI radiomics with clinical factors.

    No full text
    BackgroundDose adjuvant chemotherapy (AC) should be offered in nasopharyngeal carcinoma (NPC) patients? Different guidelines provided the different recommendations.MethodsIn this retrospective study, a total of 140 patients were enrolled and followed for 3 years, with 24 clinical features being collected. The imaging features on the enhanced-MRI sequence were extracted by using PyRadiomics platform. The pearson correlation coefficient and the random forest was used to filter the features associated with recurrence or metastasis. A clinical-radiomics model (CRM) was constructed by the Cox multivariable analysis in training cohort, and was validated in validation cohort. All patients were divided into high- and low-risk groups through the median Rad-score of the model. The Kaplan-Meier survival curves were used to compare the 3-year recurrence or metastasis free rate (RMFR) of patients with or without AC in high- and low-groups.ResultsIn total, 960 imaging features were extracted. A CRM was constructed from nine features (seven imaging features and two clinical factors). In the training cohort, the area under curve (AUC) of CRM for 3-year RMFR was 0.872 (P ConclusionConsidering increasing RMFR, a prediction model for NPC based on two clinical factors and seven imaging features suggested the AC needs to be added to patients in the high-risk group and not in the low-risk group

    Angelica acutiloba Kitagawa flower induces A549 cell pyroptosis via the NF-κB/NLRP3 pathway for anti-lung cancer effects

    No full text
    Abstract Angelica acutiloba Kitagawa, a traditional medicinal herb of the Umbelliferae family, has been demonstrated to have anticancer activity. In this study, we investigated the anti-lung cancer effects of two compounds extracted from A. acutiloba flowers: kaempferol-3-O-α-L-(4″-E-p-coumaroyl)-rhamnoside (KAE) and platanoside (PLA). MTT, cell colony formation, and cell migration (scratch) assays revealed that both KAE (100 μM) and PLA (50 μM and 100 μM) inhibited the viability, proliferation, and migration of A549 cells. Dichlorodihydrofluorescein diacetate assays showed that KAE and PLA also induced the generation of reactive oxygen species in A549 cells. Morphologically, A549 cells swelled and grew larger under treatment with KAE and PLA, with the most significant changes at 100 μM PLA. Fluorescence staining and measurement of lactate dehydrogenase release showed that the cells underwent pyroptosis with concomitant upregulation of interleukin (IL)-1β and IL-18. Furthermore, both KAE and PLA induced upregulation of NF-κB, PARP, NLRP3, ASC, cleaved-caspase-1, and GSDMD expression in A549 cells. Subsequent investigations unveiled that these compounds interact with NLRP3, augment NLRP3’s binding affinity with ASC, and stimulate the assembly of the inflammasome, thereby inducing pyroptosis. In conclusion, KAE and PLA, two active components of A. acutiloba flower extract, had significant anti-lung cancer activities exerted through regulation of proteins related to the NLRP3 inflammasome pathway

    Blind and Noise-Tolerant Modulation Format Identification

    No full text

    Supplementary material_code.

    No full text
    BackgroundDose adjuvant chemotherapy (AC) should be offered in nasopharyngeal carcinoma (NPC) patients? Different guidelines provided the different recommendations.MethodsIn this retrospective study, a total of 140 patients were enrolled and followed for 3 years, with 24 clinical features being collected. The imaging features on the enhanced-MRI sequence were extracted by using PyRadiomics platform. The pearson correlation coefficient and the random forest was used to filter the features associated with recurrence or metastasis. A clinical-radiomics model (CRM) was constructed by the Cox multivariable analysis in training cohort, and was validated in validation cohort. All patients were divided into high- and low-risk groups through the median Rad-score of the model. The Kaplan-Meier survival curves were used to compare the 3-year recurrence or metastasis free rate (RMFR) of patients with or without AC in high- and low-groups.ResultsIn total, 960 imaging features were extracted. A CRM was constructed from nine features (seven imaging features and two clinical factors). In the training cohort, the area under curve (AUC) of CRM for 3-year RMFR was 0.872 (P ConclusionConsidering increasing RMFR, a prediction model for NPC based on two clinical factors and seven imaging features suggested the AC needs to be added to patients in the high-risk group and not in the low-risk group.</div
    corecore