587 research outputs found

    Network monitoring in multicast networks using network coding

    Get PDF
    In this paper we show how information contained in robust network codes can be used for passive inference of possible locations of link failures or losses in a network. For distributed randomized network coding, we bound the probability of being able to distinguish among a given set of failure events, and give some experimental results for one and two link failures in randomly generated networks. We also bound the required field size and complexity for designing a robust network code that distinguishes among a given set of failure events

    A FRACTURE-INDUCED ADHESIVE WEAR CRITERION AND ITS APPLICATION TO THE SIMULATION OF WEAR PROCESS OF THE POINT CONTACTS UNDER MIXED LUBRICATION CONDITION

    Get PDF
    Adhesive wear is one of the four major wear mechanisms and very common in almost all macro-, micro- or nanotribosystems. In an adhesive wear process, tiny material fragments are pulled off from one sliding surface and adhered onto the counterpart. Later these fragments form loose particles or transfer between the contact surfaces. Because of the topographical and physicochemical property non-uniformity of engineering surfaces, adhesive wear happens heterogeneously on the loaded sliding surfaces, and it is also discontinuous during sliding or rolling motion owing to the damage accumulation and fracture occurred inside the subsurface layers. Taking account of these characteristics, a novel fracture-induced adhesive wear criterion has been proposed in this study in order to predict local wear of material in sliding. Moreover, the proposed wear criterion is applied to predicting wear particle formation and morphology evolution of mixed lubricated rough surfaces during reciprocating sliding, and the simulation results are compared with the ball-on-disk experimental measurements

    A Review of Particle Removal Due to Thermophoretic Deposition

    Get PDF
    Thermophoretic deposition is an important technique for particle removal. The thermophoretic force of the particles under an appropriate temperature gradient can achieve a good particle removal effect. At present, there have been many studies on the deposition mechanism of ultrafine particles under the action of thermophoresis. In this chapter, the development history and current research status of the research on the thermophoretic deposition effect of ultrafine particles are summarized, and the future direction of thermophoretic deposition is proposed

    Kibra Functions as a Tumor Suppressor Protein that Regulates Hippo Signaling in Conjunction with Merlin and Expanded

    Get PDF
    SummaryThe Hippo signaling pathway regulates organ size and tissue homeostasis from Drosophila to mammals. Central to this pathway is a kinase cascade wherein Hippo (Hpo), in complex with Salvador (Sav), phosphorylates and activates Warts (Wts), which in turn phosphorylates and inactivates the Yorkie (Yki) oncoprotein, known as the YAP coactivator in mammalian cells. The FERM domain proteins Merlin (Mer) and Expanded (Ex) are upstream components that regulate Hpo activity through unknown mechanisms. Here we identify Kibra as another upstream component of the Hippo signaling pathway. We show that Kibra functions together with Mer and Ex in a protein complex localized to the apical domain of epithelial cells, and that this protein complex regulates the Hippo kinase cascade via direct binding to Hpo and Sav. These results shed light on the mechanism of Ex and Mer function and implicate Kibra as a potential tumor suppressor with relevance to neurofibromatosis

    3,5-Dinitro-N-(4-nitro­phen­yl)benzamide

    Get PDF
    In the title mol­ecule, C13H8N4O7, the amide fragment has an anti configuration. The mean planes of the two benzene rings form a dihedral angle of 7.78 (4)°. The mean planes of the three nitro groups are twisted by 6.82 (3), 5.01 (4) and 18.94 (7)° with respect to the benzene rings to which they are attached. In the crystal, mol­ecules are linked by weak inter­molecular N—H⋯O hydrogen bonds into chains along [100]
    corecore