639 research outputs found

    N, S co-doped porous graphene-like carbon synthesized by a facile coal tar pitch-blowing strategy for high-performance supercapacitors

    Get PDF
    Herein, coal tar pitch (CTP) derived nitrogen and sulfur co-doped porous graphene-like carbon (NSPC) is performed by an ammonium sulfate-assisted chemical blowing strategy. Afterward, NSPC was activated by KOH to form a-NSPC features a bubble-like structure with a thin porous shell and a well-balanced porous ratio. Serving as electrode materials for supercapacitors, the capacitance of a-NSPC was 368 F g−1 at 0.5 A g−1. Meanwhile, the prepared materials exhibit excellent cycling stability after 10,000 cycles. This work may not only prepare superior electrode materials but also provide a feasible strategy for large-scale production of high-performance and low-cost electrode materials

    A New Business Mode for FTs Chain in an E-Commerce Environment

    Get PDF
    With the rise in the online demand for fashion and textiles (FTs) along with the development of e-commerce, a business mode called drop-shipping mode has emerged. Despite the fact that the drop-shipping mode has many merits, this method has less earning power compared with the traditional business mode. This study proposes a mix business mode for FTs chains in an e-commerce environment. Traditional and drop-shipping modes are special cases of the mix mode. In addition, a generalized model is built to analyze the profitability of FTs chains. Our study shows that, in most cases, the mix mode improves overall profit of FTs chain. Moreover, we consider the seasonality and the short life cycle of fashion items in analyzing the relationship between the e-retailer's optimal inventory level and demand distribution parameters. The numerical example shows that, by changing their inventory level, e-retailers can address the demand fluctuation using the mix mode. The proposed mix mode employs both business modes to enhance the profitability of a FTs chain. As such, the mix mode is an effective method to address demand fluctuation for FTs in an e-commerce environment

    Kibra Functions as a Tumor Suppressor Protein that Regulates Hippo Signaling in Conjunction with Merlin and Expanded

    Get PDF
    SummaryThe Hippo signaling pathway regulates organ size and tissue homeostasis from Drosophila to mammals. Central to this pathway is a kinase cascade wherein Hippo (Hpo), in complex with Salvador (Sav), phosphorylates and activates Warts (Wts), which in turn phosphorylates and inactivates the Yorkie (Yki) oncoprotein, known as the YAP coactivator in mammalian cells. The FERM domain proteins Merlin (Mer) and Expanded (Ex) are upstream components that regulate Hpo activity through unknown mechanisms. Here we identify Kibra as another upstream component of the Hippo signaling pathway. We show that Kibra functions together with Mer and Ex in a protein complex localized to the apical domain of epithelial cells, and that this protein complex regulates the Hippo kinase cascade via direct binding to Hpo and Sav. These results shed light on the mechanism of Ex and Mer function and implicate Kibra as a potential tumor suppressor with relevance to neurofibromatosis

    Ball Mill Fault Prediction Based on Deep Convolutional Auto-Encoding Network

    Full text link
    Ball mills play a critical role in modern mining operations, making their bearing failures a significant concern due to the potential loss of production efficiency and economic consequences. This paper presents an anomaly detection method based on Deep Convolutional Auto-encoding Neural Networks (DCAN) for addressing the issue of ball mill bearing fault detection. The proposed approach leverages vibration data collected during normal operation for training, overcoming challenges such as labeling issues and data imbalance often encountered in supervised learning methods. DCAN includes the modules of convolutional feature extraction and transposed convolutional feature reconstruction, demonstrating exceptional capabilities in signal processing and feature extraction. Additionally, the paper describes the practical deployment of the DCAN-based anomaly detection model for bearing fault detection, utilizing data from the ball mill bearings of Wuhan Iron & Steel Resources Group and fault data from NASA's bearing vibration dataset. Experimental results validate the DCAN model's reliability in recognizing fault vibration patterns. This method holds promise for enhancing bearing fault detection efficiency, reducing production interruptions, and lowering maintenance costs.Comment: 9 pages, 11 figure
    • …
    corecore