2 research outputs found

    Stabilization of Solid-Supported Phospholipid Multilayer against Water by Gramicidin Addition

    No full text
    It was demonstrated that hydrophobicity of solid supported planar dipalmitoyl phosphatidylcholine (DPPC) phospholipid multilayer can be greatly increased by incorporating a transmembrane protein, gramicidin, into the DPPC membrane. The contact angle of deionized water droplet on the gramicidin-modified DPPC membrane increased from 0° (complete wetting) without gramicidin to 55° after adding 15 mol % gramicidin. The increased hydrophobicity of the gramicidin-modified DPPC membrane allowed the membrane to remain stable at the air/water interface as well as underwater. The Au nanoparticles deposited on the gramicidin-modified DPPC membrane reproduced the characteristic surface plasmon resonance peak after being kept underwater or in phosphate-buffered saline solution for 5 days, attesting to the membrane stability in an aqueous environment. The enhanced underwater stability of the lipid multilayer substantially broadens the potential application of the lipid multilayer which includes biosensing, enzymatic fuel cell, surface enhanced Raman spectroscopy substrate

    Deposition of Metal Nanoparticles on Phospholipid Multilayer Membranes Modified by Gramicidin

    No full text
    A planar dipalmitoyl phosphatidylcholine (DPPC) multilayer phospholipid membrane was structurally modified by introducing a transmembrane protein, gramicidin (up to 25 mol %), to study its effect on the metal nanoparticles deposited on the membrane. Without gramicidin, when 3-nm-thick Ag, Sn, Al, and Au were deposited, the nanoparticles hardly nucleated on the DPPC membrane in rigid gel state (except for Au); however, the gramicidin addition dramatically enhanced the DPPC membrane surface’s affinity for metal atoms so that a dense array of metal (Ag, Sn, and Au) or metal-oxide (Al-oxide) nanoparticles was produced on the membrane surface. The particle sizes ranged from 3 to 15 nm depending on the metal and gramicidin concentration, whereas the particle density was strongly dictated by the gramicidin concentration. The proposed method provides a convenient, generally applicable synthesis route for preparing different metal or metal-oxide nanoparticles on a relatively robust biocompatible membrane
    corecore