2,266 research outputs found

    Determination of the Equation of State of a Two-Component Fermi Gas at Unitarity

    Full text link
    We report on the measurement of the equation of state of a two-component Fermi gas of 6^6Li atoms with resonant interactions. By analyzing the \textit{in situ} density distributions of a population-imbalanced Fermi mixture reported in the recent experiment [Y. Shin \textit{et al.}, Nature \textbf{451}, 689 (2008)], we determine the energy density of a resonantly interacting Fermi gas as a function of the densities of the two components. We present a method to determine the equation of state directly from the shape of the trapped cloud, where the fully-polarized, non-interacting ideal Fermi gas in the outer region provides the absolute calibration of particle density. From the density profiles obtained at the lowest temperature, we estimate the zero-temperature equation of state.Comment: 4 pages, 3 figures / typo correction / figure replacemen

    Observation of Topologically Stable 2D Skyrmions in an Antiferromagnetic Spinor Bose-Einstein Condensate

    Full text link
    We present the creation and time evolution of two-dimensional Skyrmion excitations in an antiferromagnetic spinor Bose-Einstein condensate. Using a spin rotation method, the Skyrmion spin textures were imprinted on a sodium condensate in a polar phase, where the two-dimensional Skyrmion is topologically protected. The Skyrmion was observed to be stable on a short time scale of a few tens of ms but to have dynamical instability to deform its shape and eventually decay to a uniform spin texture. The deformed spin textures reveal that the decay dynamics involves breaking the polar phase inside the condensate without having topological charge density flow through the boundary of the finite-sized sample. We discuss the possible formation of half-quantum vortices in the deformation process.Comment: 5 pages, 5 figure

    Role of thermal friction in relaxation of turbulent Bose-Einstein condensates

    Full text link
    In recent experiments, the relaxation dynamics of highly oblate, turbulent Bose-Einstein condensates (BECs) was investigated by measuring the vortex decay rates in various sample conditions [Phys. Rev. A 90\bf 90, 063627 (2014)] and, separately, the thermal friction coefficient α\alpha for vortex motion was measured from the long-time evolution of a corotating vortex pair in a BEC [Phys. Rev. A 92\bf 92, 051601(R) (2015)]. We present a comparative analysis of the experimental results, and find that the vortex decay rate Γ\Gamma is almost linearly proportional to α\alpha. We perform numerical simulations of the time evolution of a turbulent BEC using a point-vortex model equipped with longitudinal friction and vortex-antivortex pair annihilation, and observe that the linear dependence of Γ\Gamma on α\alpha is quantitatively accounted for in the dissipative point-vortex model. The numerical simulations reveal that thermal friction in the experiment was too strong to allow for the emergence of a vortex-clustered state out of decaying turbulence.Comment: 7 pages, 5 figure

    Periodic shedding of vortex dipoles from a moving penetrable obstacle in a Bose-Einstein condensate

    Full text link
    We investigate vortex shedding from a moving penetrable obstacle in a highly oblate Bose-Einstein condensate. The penetrable obstacle is formed by a repulsive Gaussian laser beam that has the potential barrier height lower than the chemical potential of the condensate. The moving obstacle periodically generates vortex dipoles and the vortex shedding frequency fvf_v linearly increases with the obstacle velocity vv as fv=a(vvc)f_v=a(v-v_c), where vcv_c is a critical velocity. Based on periodic shedding behavior, we demonstrate deterministic generation of a single vortex dipole by applying a short linear sweep of a laser beam. This method will allow further controlled vortex experiments such as dipole-dipole collisions.Comment: 6 pages, 7 figure

    Metastable hard-axis polar state of a spinor Bose-Einstein condensate under a magnetic field gradient

    Get PDF
    We investigate the stability of a hard-axis polar state in a spin-1 antiferromagnetic Bose-Einstein condensate under a magnetic field gradient, where the easy-plane spin anisotropy is controlled by a negative quadratic Zeeman energy q<0q<0. In a uniform magnetic field, the axial polar state is dynamically unstable and relaxes into the planar polar ground state. However, under a field gradient BB', the excited spin state becomes metastable down to a certain threshold qthq_{th} and as qq decreases below qthq_{th}, its intrinsic dynamical instability is rapidly recalled. The incipient spin excitations in the relaxation dynamics appear with stripe structures, indicating the rotational symmetry breaking by the field gradient. We measure the dependences of qthq_{th} on BB' and the sample size, and we find that qthq_{th} is highly sensitive to the field gradient in the vicinity of B=0B'=0, exhibiting power-law behavior of qthBα|q_{th}|\propto B'^{\alpha} with α0.5\alpha \sim 0.5. Our results demonstrate the significance of the field gradient effect in the quantum critical dynamics of spinor condensates.Comment: 8 pages, 7 figure

    Observation of wall-vortex composite defects in a spinor Bose-Einstein condensate

    Get PDF
    We report the observation of spin domain walls bounded by half-quantum vortices (HQVs) in a spin-1 Bose-Einstein condensate with antiferromagnetic interactions. A spinor condensate is initially prepared in the easy-plane polar phase, and then, suddenly quenched into the easy-axis polar phase. Domain walls are created via the spontaneous Z2\mathbb{Z}_2 symmetry breaking in the phase transition and the walls dynamically split into composite defects due to snake instability. The end points of the defects are identified as HQVs for the polar order parameter and the mass supercurrent in their proximity is demonstrated using Bragg scattering. In a strong quench regime, we observe that singly charged quantum vortices are formed with the relaxation of free wall-vortex composite defects. Our results demonstrate a nucleation mechanism for composite defects via phase transition dynamics.Comment: 10 pages, 11 figures, reference update

    Critical Velocity for Vortex Shedding in a Bose-Einstein Condensate

    Full text link
    We present measurements of the critical velocity for vortex shedding in a highly oblate Bose-Einstein condensate with a moving repulsive Gaussian laser beam. As a function of the barrier height V0V_0, the critical velocity vcv_c shows a dip structure having a minimum at V0μV_0 \approx \mu , where μ\mu is the chemical potential of the condensate. At fixed V07μV_0\approx 7\mu, we observe that the ratio of vcv_c to the speed of sound csc_s monotonically increases for decreasing σ/ξ\sigma/\xi, where σ\sigma is the beam width and ξ\xi is the condensate healing length. The measured upper bound for vc/csv_c/c_s is about 0.4, which is in good agreement with theoretical predictions for a two-dimensional superflow past a circular cylinder. We explain our results with the density reduction effect of the soft boundary of the Gaussian obstacle, based on the local Landau criterion for superfluidity.Comment: 5 pages, 4 figure
    corecore