239 research outputs found

    Evaluation of the brain activation induced by functional electrical stimulation and voluntary contraction using functional magnetic resonance imaging

    Get PDF
    BACKGROUND: To observe brain activation induced by functional electrical stimulation, voluntary contraction, and the combination of both using functional magnetic resonance imaging (fMRI). METHODS: Nineteen healthy young men were enrolled in the study. We employed a typical block design that consisted of three sessions: voluntary contraction only, functional electrical stimulation (FES)-induced wrist extension, and finally simultaneous voluntary and FES-induced movement. MRI acquisition was performed on a 3.0โ€‰T MR system. To investigate activation in each session, one-sample t-tests were performed after correcting for false discovery rate (FDR; pโ€‰<โ€‰0.05). To compare FES-induced movement and combined contraction, a two-sample t-test was performed using a contrast map (pโ€‰<โ€‰0.01). RESULTS: In the voluntary contraction alone condition, brain activation was observed in the contralateral primary motor cortex (MI), thalamus, bilateral supplementary motor area (SMA), primary sensory cortex (SI), secondary somatosensory motor cortex (SII), caudate, and cerebellum (mainly ipsilateral). During FES-induced wrist movement, brain activation was observed in the contralateral MI, SI, SMA, thalamus, ipsilateral SII, and cerebellum. During FES-induced movement combined with voluntary contraction, brain activation was found in the contralateral MI, anterior cingulate cortex (ACC), SMA, ipsilateral cerebellum, bilateral SII, and SI. The activated brain regions (number of voxels) of the MI, SI, cerebellum, and SMA were largest during voluntary contraction alone and smallest during FES alone. SII-activated brain regions were largest during voluntary contraction combined with FES and smallest during FES contraction alone. The brain activation extent (maximum t score) of the MI, SI, and SII was largest during voluntary contraction alone and smallest during FES alone. The brain activation extent of the cerebellum and SMA during voluntary contraction alone was similar during FES combined with voluntary contraction; however, cerebellum and SMA activation during FES movement alone was smaller than that of voluntary contraction alone or voluntary contraction combined with FES. Between FES movement alone and combined contraction, activated regions and extent due to combined contraction was significantly higher than that of FES movement alone in the ipsilateral cerebellum and the contralateral MI and SI. CONCLUSIONS: Voluntary contraction combined with FES may be more effective for brain activation than FES-only movements for rehabilitation therapy. In addition, voluntary effort is the most important factor in the therapeutic process

    Structural and histological characterization of oviductal magnum and lectin-binding patterns in Gallus domesticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although chicken oviduct is a useful model and target tissue for reproductive biology and transgenesis, little is known because of the highly specific hormonal regulation and the lack of fundamental researches, including lectin-binding activities and glycobiology. Because lectin is attached to secreted glycoproteins, we hypothesized that lectin could be bound to secretory egg-white proteins, and played a crucial role in the generation of egg-white protein in the oviduct. Hence, the purpose of this study was to investigate the structural, histological and lectin-binding characteristics of the chicken oviductal magnum from juvenile and adult hens.</p> <p>Methods</p> <p>The oviductal magnums from juvenile and adult hens were prepared for ultrastructural analysis, qRT-PCR and immunostaining. Immunohistochemistry of anti-ovalbumin, anti-ESR1 and anti-PGR, and mRNA expression of egg-white genes and steroid hormone receptor genes were evaluated. Lectin histochemical staining was also conducted in juvenile and adult oviductal magnum tissues.</p> <p>Results</p> <p>The ultrastructural analysis showed that ciliated cells were rarely developed on luminal surface in juvenile magnum, but not tubular gland cells. In adult magnum, two types of epithelium and three types of tubular gland cells were observed. qRT-PCR analysis showed that egg-white genes were highly expressed in adult oviduct compared with the juvenile. However, mRNA expressions of <it>ESR1 </it>and <it>PGR </it>were considerably higher in juvenile oviduct than adult (<it>P </it>< 0.05). The immunohistochemical analysis showed that anti-ovalbumin antibody was detected in adult oviduct not in juvenile, unlikely anti-ESR1 and anti-PGR antibodies that were stained in both oviducts. In histological analysis, Toluidine blue was stained in juvenile and adult oviductal epithelia, and adult tubular glands located in the outer layer of oviductal magnum. In contrast, PAS was positive only in adult oviductal tubular gland. Lectins were selectively bound to oviductal epithelium, stroma, and tubular gland cells. Particularly, lectin-ConA and WGA were bound to electron-dense secretory granules in tubular gland.</p> <p>Conclusions</p> <p>The observation of ultrastructural analysis, mRNA expression, immunohistochemistry and lectin staining showed structural and physiological characterization of juvenile and adult oviductal magnum. Consequently, oviduct study could be helped to <it>in vitro </it>culture of chicken oviductal cells, to develop epithelial or tubular gland cell-specific markers, and to understand female reproductive biology and endocrinology.</p

    Progress in Understanding and Sequencing the Genome of Brassica rapa

    Get PDF
    Brassica rapa, which is closely related to Arabidopsis thaliana, is an important crop and a model plant for studying genome evolution via polyploidization. We report the current understanding of the genome structure of B. rapa and efforts for the whole-genome sequencing of the species. The tribe Brassicaceae, which comprises ca. 240 species, descended from a common hexaploid ancestor with a basic genome similar to that of Arabidopsis. Chromosome rearrangements, including fusions and/or fissions, resulted in the present-day โ€œdiploidโ€ Brassica species with variation in chromosome number and phenotype. Triplicated genomic segments of B. rapa are collinear to those of A. thaliana with InDels. The genome triplication has led to an approximately 1.7-fold increase in the B. rapa gene number compared to that of A. thaliana. Repetitive DNA of B. rapa has also been extensively amplified and has diverged from that of A. thaliana. For its whole-genome sequencing, the Brassica rapa Genome Sequencing Project (BrGSP) consortium has developed suitable genomic resources and constructed genetic and physical maps. Ten chromosomes of B. rapa are being allocated to BrGSP consortium participants, and each chromosome will be sequenced by a BAC-by-BAC approach. Genome sequencing of B. rapa will offer a new perspective for plant biology and evolution in the context of polyploidization

    Large tubular colonic duplication in an adult treated with a small midline incision

    Get PDF
    Tubular colonic duplication presenting in adults is rare and difficult to diagnose preoperatively. Only a few cases have been reported in the literature. We report a case of a 29-year-old lady presenting with a long history of chronic constipation, abdominal mass and repeated episodes of abdominal pain. The abdominal-pelvic computed tomography scan showed segmental bowel wall thickening thought to be small bowel, and dilatation with stasis of intraluminal content. The provisional diagnosis was small bowel duplication. She was scheduled for single port laparoscopic resection. However, a T-shaped tubular colonic duplication at sigmoid colon was found intraoperatively. Resection of the large T-shaped tubular colonic duplication containing multiple impacted large fecaloma and primary anastomosis was performed. There was no perioperative complication. We report, herein, the case of a T-shaped tubular colonic duplication at sigmoid colon in an adult who was successfully treated through mini-laparotomy assisted by single port laparoscopic surgery

    The first generation of a BAC-based physical map of Brassica rapa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Brassica </it>includes the most extensively cultivated vegetable crops worldwide. Investigation of the <it>Brassica </it>genome presents excellent challenges to study plant genome evolution and divergence of gene function associated with polyploidy and genome hybridization. A physical map of the <it>B. rapa </it>genome is a fundamental tool for analysis of <it>Brassica </it>"A" genome structure. Integration of a physical map with an existing genetic map by linking genetic markers and BAC clones in the sequencing pipeline provides a crucial resource for the ongoing genome sequencing effort and assembly of whole genome sequences.</p> <p>Results</p> <p>A genome-wide physical map of the <it>B. rapa </it>genome was constructed by the capillary electrophoresis-based fingerprinting of 67,468 Bacterial Artificial Chromosome (BAC) clones using the five restriction enzyme SNaPshot technique. The clones were assembled into contigs by means of FPC v8.5.3. After contig validation and manual editing, the resulting contig assembly consists of 1,428 contigs and is estimated to span 717 Mb in physical length. This map provides 242 anchored contigs on 10 linkage groups to be served as seed points from which to continue bidirectional chromosome extension for genome sequencing.</p> <p>Conclusion</p> <p>The map reported here is the first physical map for <it>Brassica </it>"A" genome based on the High Information Content Fingerprinting (HICF) technique. This physical map will serve as a fundamental genomic resource for accelerating genome sequencing, assembly of BAC sequences, and comparative genomics between <it>Brassica </it>genomes. The current build of the <it>B. rapa </it>physical map is available at the <it>B. rapa </it>Genome Project website for the user community.</p

    Clinico-genetic study of nail-patella syndrome

    Get PDF
    Nail-patella syndrome (NPS) is an autosomal dominant disease that typically involves the nails, knees, elbows and the presence of iliac horns. In addition, some patients develop glomerulopathy or adult-onset glaucoma. NPS is caused by loss-of-function mutations in the LMX1B gene. In this study, phenotype-genotype correlation was analyzed in 9 unrelated Korean children with NPS and their affected family members. The probands included 5 boy and 4 girls who were confirmed to have NPS, as well as 6 of their affected parents. All of the patients (100%) had dysplastic nails, while 13 patients (86.7%) had patellar anomalies, 8 (53.3%) had iliac horns, 6 (40.0%) had elbow contracture, and 4 (26.7%) had nephropathy including one patient who developed end-stage renal disease at age 4.2. The genetic study revealed 8 different LMX1B mutations (5 missense mutations, 1 frame-shifting deletion and 2 abnormal splicing mutations), 6 of which were novel. Genotype-phenotype correlation was not identified, but inter- and intrafamilial phenotypic variability was observed. Overall, these findings are similar to the results of previously conducted studies, and the mechanism underlying the phenotypic variations and predisposing factors of the development and progression of nephropathy in NPS patients are still unknown
    • โ€ฆ
    corecore