4,593 research outputs found

    An Efficient Synthesis and Photoelectric Properties of Green Carbon Quantum Dots with High Fluorescent Quantum Yield

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)To greatly improve the production quality and efficiency of carbon quantum dots (CQDs), and provide a new approach for the large-scale production of high-quality CQDs, green carbon quantum dots (g-CQDs) with high product yield (PY) and high fluorescent quantum yield (QY) were synthesized by an efficient one-step solvothermal method with 2,7-dihydroxynaphthalene as the carbon source and ethylenediamine as the nitrogen dopant in this study. The PY and QY of g-CQDs were optimised by adjusting reaction parameters such as an amount of added ethylenediamine, reaction temperature, and reaction duration. The results showed that the maximum PY and QY values of g-CQDs were achieved, which were 70.90% and 62.98%, respectively when the amount of added ethylenediamine, reaction temperature, and reaction duration were 4 mL, 180 °C, and 12 h, respectively. With the optimised QY value of g-CQDs, white light emitting diodes (white LEDs) were prepared by combining g-CQDs and blue chip. The colour rendering index of white LEDs reached 87, and the correlated colour temperature was 2520 K, which belongs to the warm white light area and is suitable for indoor lighting. These results indicate that g-CQDs have potential and wide application prospects in the field of white LEDs.Peer reviewedFinal Published versio

    Reversible Anionic Redox Activities in Conventional LiNi1/3 Co1/3 Mn1/3 O2 Cathodes.

    Get PDF
    Redox reactions of oxygen have been considered critical in controlling the electrochemical properties of lithium-excessive layered-oxide electrodes. However, conventional electrode materials without overlithiation remain the most practical. Typically, cationic redox reactions are believed to dominate the electrochemical processes in conventional electrodes. Herein, we show unambiguous evidence of reversible anionic redox reactions in LiNi1/3 Co1/3 Mn1/3 O2 . The typical involvement of oxygen through hybridization with transition metals is discussed, as well as the intrinsic oxygen redox process at high potentials, which is 75 % reversible during initial cycling and 63 % retained after 10 cycles. Our results clarify the reaction mechanism at high potentials in conventional layered electrodes involving both cationic and anionic reactions and indicate the potential of utilizing reversible oxygen redox reactions in conventional layered oxides for high-capacity lithium-ion batteries

    Vertically aligned InGaN nanowires with engineered axial In composition for highly efficient visible light emission.

    Get PDF
    We report on the fabrication of novel InGaN nanowires (NWs) with improved crystalline quality and high radiative efficiency for applications as nanoscale visible light emitters. Pristine InGaN NWs grown under a uniform In/Ga molar flow ratio (UIF) exhibited multi-peak white-like emission and a high density of dislocation-like defects. A phase separation and broad emission with non-uniform luminescent clusters were also observed for a single UIF NW investigated by spatially resolved cathodoluminescence. Hence, we proposed a simple approach based on engineering the axial In content by increasing the In/Ga molar flow ratio at the end of NW growth. This new approach yielded samples with a high luminescence intensity, a narrow emission spectrum, and enhanced crystalline quality. Using time-resolved photoluminescence spectroscopy, the UIF NWs exhibited a long radiative recombination time (Ï„r) and low internal quantum efficiency (IQE) due to strong exciton localization and carrier trapping in defect states. In contrast, NWs with engineered In content demonstrated three times higher IQE and a much shorter Ï„r due to mitigated In fluctuation and improved crystal quality

    Enhancing Thermal Energy Storage in Buildings with Novel Functionalised MWCNTs-Enhanced Phase Change Materials: Towards Efficient and Stable Solutions

    Get PDF
    © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Phase change materials (PCMs) are a promising panacea to tackle the intermittency of renewable energy sources, but their thermal performance is limited by low thermal conductivity (TC). This pioneering work investigates the potential of organic PCM-enriched surface-modified and un-modified multi-walled carbon nanotubes (MWCNTs) for low-temperature thermal energy storage (TES) applications. The functionalised and un-functionalised MWCNTs enhanced PCM have demonstrated a TC enhancement of 158 % and 147 %, respectively, at 25 °C. However, the TC value of the unmodified MWCNTs-based PCM dropped by 52.5 % after 48 h at 25 °C, while that of the functionalised MWCNTs-based PCM remained stable. A DSC analysis of up to 200 thermal cycles confirmed that the surface-modified and un-modified MWCNTs had no major effect on the peak melting and cooling temperatures of the nano-enhanced PCMs although a minor decrease of 7.5 % and 7.7 % in the melting and crystallisation enthalpies, respectively, was noticed with the inclusion of functionalised MWCNTs. Moreover, functionalised MWCNTs incorporated PCMs have led to increases in specific heat capacity by 23 % with an optimal melting enthalpy value of 229.7 J/g. In addition, no super-cooling, no phase segregation, and a small phase change temperature were noticed with these nano-enhanced PCMs. Finally, no chemical interaction from nano-PCMs was seen in the FT-IR spectra with the incorporation of both functionalised and un-treated MWCNTs. It is evident that the functionalised MWCNT-based PCM has better thermal stability and it offers a promising alternative for improving thermal storage and management capabilities in buildings, contributing to a sustainable and energy-efficient building design.Peer reviewe

    Preparation and thermophysical characterisation analysis of potential nano-phase transition materials for thermal energy storage applications

    Get PDF
    © 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).The efficacious use of phase change materials (PCMs) is mainly confined by their poor thermal conductivity (TC). In this study, multiwalled carbon nanotubes (MWCNTs), graphene nanoplatelets (GNP) and titanium oxide (TiO2) based single, and novel hybrid nano additives were incorporated into paraffin, a typical PCM, to find the optimal composite which could not only enhance the thermal conductivity but also limit the latent heat. Both unitary and hybrid nanoparticles at five different concentrations (0.2, 0.4, 0.6, 0.8 & 1.0 wt.%) were investigated using various characterisation techniques, including FT-IR, XRD, DSC, TGA, and TC apparatus. The results depicted good intermolecular interactions between the PCM and the nanoparticles and showed that the dispersion of nanoparticles within the PCM did not affect the chemical structure of pristine paraffin but enhanced its thermal and chemical stability. Novel hybrid nanocomposites were found to be more stable and exhibit better thermal performance than single nanocomposites. The highest value of thermal conductivity was observed at 1.0 wt.% of GNP+MWCNTs hybrid particles based PCM with a maximum enhancement of 170% at 25 °C. However, compared with single and hybrid carbon-based nanofillers, TiO2 based mono and hybrid nano-PCM showed a minimum reduction in the latent heat with a maximum decrease of -3.7%, -5.2%, and -5.5% at 1 wt.% of TiO2, TiO2+GNP and TiO2+MWCNTs, respectively. The significant improvement in the thermal properties of PCMs with the inclusion of these nanofillers indicates that they have the potential to be employed in thermal energy storage applications.Peer reviewe
    • …
    corecore