728 research outputs found

    Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation

    Get PDF
    In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. The simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range

    The Underreaction Hypothesis and the New Issue Puzzle: Evidence from Japan

    Get PDF
    This paper investigates the long-term performance of Japanese firms issuing convertible debt or equity. We find that these firms perform poorly even though the stock-price reaction to convertible debt and equity issue announcements is not significantly negative for Japanese firms and Japanese firms do not issue equity or convertible debt following strong positive abnormal returns. Whereas in the U.S. underperformance appears to be concentrated in the smaller firms and in the firms with a high market-to-book ratio, this is not the case in Japan. The underperformance of Japanese issuing firms cannot be understood in terms of the underreaction hypothesis that some have advanced as an explanation for the poor returns of U.S. issuing firms.

    Antioxidant and Anti-Inflammatory Effects of Shungite against Ultraviolet B Irradiation-Induced Skin Damage in Hairless Mice

    Get PDF
    As fullerene-based compound applications have been rapidly increasing in the health industry, the need of biomedical research is urgently in demand. While shungite is regarded as a natural source of fullerene, it remains poorly documented. Here, we explored the in vivo effects of shungite against ultraviolet B- (UVB-) induced skin damage by investigating the physiological skin parameters, immune-redox profiling, and oxidative stress molecular signaling. Toward this, mice were UVB-irradiated with 0.75 mW/cm2 for two consecutive days. Consecutively, shungite was topically applied on the dorsal side of the mice for 7 days. First, we found significant improvements in the skin parameters of the shungite-treated groups revealed by the reduction in roughness, pigmentation, and wrinkle measurement. Second, the immunokine profiling in mouse serum and skin lysates showed a reduction in the proinflammatory response in the shungite-treated groups. Accordingly, the redox profile of shungite-treated groups showed counterbalance of ROS/RNS and superoxide levels in serum and skin lysates. Last, we have confirmed the involvement of Nrf2- and MAPK-mediated oxidative stress pathways in the antioxidant mechanism of shungite. Collectively, the results clearly show that shungite has an antioxidant and anti-inflammatory action against UVB-induced skin damage in hairless mice

    A Study of Solids and Gas Mixing in a Partitioned Fluidized Bed

    Get PDF
    A partitioned fluidized bed gasifier has been developed for improving coal gasification performance. The basic concept is to divide a fluidized bed into two parts, a gasifier and a combustor, by a partition. Char is burnt in the combustor and generated heat is supplied to the gasifier by solid mixing. Therefore, solid mixing should be maximized whereas gas mixing between syngas and the combusted gas should be minimized. In this study, gas and solid mixing behaviors were verified in cold model acrylic beds. For monitoring solid mixing behavior, transient temperature trends in the beds were analyzed. A heat source and a heat sink were installed in each bed. Dozens of thermocouples were used to monitor temperature distribution

    Effect of intradialytic change in blood pressure and ultrafiltration volume on the variation in access flow measured by ultrasound dilution

    Get PDF
    AbstractBackgroundProspective access flow measurement is the preferred method for vascular access surveillance in hemodialysis (HD) patients. We studied the effect of intradialytic change in blood pressure and ultrafiltration volume on the variation in access flow measured by ultrasound dilution.MethodsAccess flow was measured 30minutes, 120minutes, and 240minutes after the start of HD by ultrasound dilution in 30 patients during 89 HD sessions and evaluated for variation.ResultsThe mean age of the 30 patients was 62±11 years: 19 were male. The accesses comprised 16 fistulae and 14 grafts. The mean access flow over all sessions decreased by 6.1% over time (1265±568mL/min after 30minutes, 1260±599mL/min after 120minutes, and 1197±576mL/min after 240minutes, P<0.01 by repeated measures ANOVA). In addition, a≥5% decrease in mean arterial pressure during HD significantly reduced access flow (P=0.014). However, no other variable (ultrafiltration volume, sex, age, presence of diabetes, type or location of access, body surface area, hemoglobin, serum albumin level) interacted significantly with the effect of time on access flow. Furthermore, mean arterial pressure did not correlate with ultrafiltration volume.ConclusionWe conclude that the variation in access flow during HD is relatively small. Decreased blood pressure is a risk factor for variation in access flow measured by ultrasound dilution. In most patients whose blood pressures are stable during HD, the access flow can be measured at any time during the HD treatment

    Epitheliotropic cutaneous lymphoma (mycosis fungoides) in a dog

    Get PDF
    A seven-year-old castrated male Yorkshire terrier dog was presented for a recurrent skin disease. Erythematous skin during the first visit progressed from multiple plaques to patch lesions and exudative erosion in the oral mucosa membrane. Biopsy samples were taken from erythematous skin and were diagnosed with epitheliotropic T cell cutaneous lymphoma by histopathology and immunochemical stain. In serum chemistry, the dog had a hypercalcemia (15.7 mg/dl) and mild increased alkaline phosphatase (417 U/l). Immunohistochemistry was performed to detect parathyroid hormone-related peptide (PTH-rP) in epitheliotropic cutaneous lymphoma tissues but the neoplastic cells were not labeled with anti-PTH-rP antibodies. The patient was treated with prednisolone and isotretinoin. However, the dog died unexpectedly

    High-Spatial Resolution Monitoring of Phycocyanin and Chlorophyll-a Using Airborne Hyperspectral Imagery

    Get PDF
    Hyperspectral imagery (HSI) provides substantial information on optical features of water bodies that is usually applicable to water quality monitoring. However, it generates considerable uncertainties in assessments of spatial and temporal variation in water quality. Thus, this study explored the influence of different optical methods on the spatial distribution and concentration of phycocyanin (PC), chlorophyll-a (Chl-a), and total suspended solids (TSSs) and evaluated the dependence of algal distribution on flow velocity. Four ground-based and airborne monitoring campaigns were conducted to measure water surface reflectance. The actual concentrations of PC, Chl-a, and TSSs were also determined, while four bio-optical algorithms were calibrated to estimate the PC and Chl-a concentrations. Artificial neural network atmospheric correction achieved Nash-Sutcliffe Efficiency (NSE) values of 0.80 and 0.76 for the training and validation steps, respectively. Moderate resolution atmospheric transmission 6 (MODTRAN 6) showed an NSE value &gt;0.8; whereas, atmospheric and topographic correction 4 (ATCOR 4) yielded a negative NSE value. The MODTRAN 6 correction led to the highest R-2 values and lowest root mean square error values for all algorithms in terms of PC and Chl-a. The PC:Chl-a distribution generated using HSI proved to be negatively dependent on flow velocity (p-value = 0.003) and successfully indicated cyanobacteria risk regions in the study area
    corecore