6,043 research outputs found

    An analytic model of tidal waves in the Yellow Sea

    Get PDF
    Co-oscillating tides in the Yellow Sea south of Shantung Peninsula are investigated analytically by a superposition of Kelvin and Poincaré waves. The Yellow Sea is approximated by a rectangular bay of uniform depth with an opening at the head, and a variable portion of tidal energy is allowed to penetrate through the opening. The analytical results basically agree with the available tidal charts. For the semi-diurnal tide the Poincaré waves play an important role throughout the whole basin of the Yellow Sea, but for the diurnal tide their influence is restricted to the vicinity of the bay head. The asymmetry of amphidromic system arises primarily due to a partial penetration of tidal energy through the opening at the bay head. A large tidal elevation in the Kyunggi Bay south of Ongjin Peninsula is due to the modifications of Kelvin and Poincaré waves at the Ongjin Peninsula

    Spatio-temporal mapping of variation potentials in leaves of Helianthus annuus L. seedlings in situ using multi-electrode array.

    Get PDF
    Damaging thermal stimuli trigger long-lasting variation potentials (VPs) in higher plants. Owing to limitations in conventional plant electrophysiological recording techniques, recorded signals are composed of signals originating from all of the cells that are connected to an electrode. This limitation does not enable detailed spatio-temporal distributions of transmission and electrical activities in plants to be visualised. Multi-electrode array (MEA) enables the recording and imaging of dynamic spatio-temporal electrical activities in higher plants. Here, we used an 8 × 8 MEA with a polar distance of 450 μm to measure electrical activities from numerous cells simultaneously. The mapping of the data that were recorded from the MEA revealed the transfer mode of the thermally induced VPs in the leaves of Helianthus annuus L. seedlings in situ. These results suggest that MEA can enable recordings with high spatio-temporal resolution that facilitate the determination of the bioelectrical response mode of higher plants under stress

    A note on modular forms and generalized anomaly cancellation formulas

    Full text link
    By studying modular invariance properties of some characteristic forms, we prove some new anomaly cancellation formulas which generalize the Han-Zhang and Han-Liu-Zhang anomaly cancellation formula

    An Edge Based Multi-Agent Auto Communication Method for Traffic Light Control.

    Get PDF
    With smart city infrastructures growing, the Internet of Things (IoT) has been widely used in the intelligent transportation systems (ITS). The traditional adaptive traffic signal control method based on reinforcement learning (RL) has expanded from one intersection to multiple intersections. In this paper, we propose a multi-agent auto communication (MAAC) algorithm, which is an innovative adaptive global traffic light control method based on multi-agent reinforcement learning (MARL) and an auto communication protocol in edge computing architecture. The MAAC algorithm combines multi-agent auto communication protocol with MARL, allowing an agent to communicate the learned strategies with others for achieving global optimization in traffic signal control. In addition, we present a practicable edge computing architecture for industrial deployment on IoT, considering the limitations of the capabilities of network transmission bandwidth. We demonstrate that our algorithm outperforms other methods over 17% in experiments in a real traffic simulation environment

    Quantum transport through a double Aharonov-Bohm-interferometer in the presence of Andreev reflection

    Full text link
    Quantum transport through a double Aharonov-Bohm-interferometer in the presence of Andreev reflection is investigated in terms of the nonequilibrium Green function method with which the reflection current is obtained. Tunable Andreev reflection probabilities depending on the interdot coupling strength and magnetic flux as well are analysised in detail. It is found that the oscillation period of the reflection probability with respect to the magnetic flux for the double interferometer depends linearly on the ratio of two parts magnetic fluxes n, i.e. 2(n+1)pi, while that of a single interferometer is 2pi. The coupling strength not only affects the height and the linewidth of Andreev reflection current peaks vs gate votage but also shifts the peak positions. It is furthermore demonstrated that the Andreev reflection current peaks can be tuned by the magnetic fluxes.Comment: 13 pages, 12 figur
    • …
    corecore