4,730 research outputs found

    Cryptococcal immune reconstitution syndrome in HIV-negative patients

    Get PDF

    Effect of pulse magnetic field on solidification structure and properties of pure copper

    Get PDF
    The application of pulse magnetic field to metal solidification is an advanced technique which can remarkably refine solidification structure. In this paper, the effect of pulse magnetic field on solidification structure, mechanical properties and conductivity of pure copper was experimentally investigated. The results showed that the solidification structure transformed from coarse columnar crystal to fine globular crystal with increasing pulse voltage. Increasing pulse voltage also improved the tensile strength. However, with the increase of pulse voltage, the elongation and electrical resistivity firstly decreased, then increased when the pulse voltage beyond a critical value. Moreover, in some conditions, pulse magnetic field can simultaneously improve the conductivity and mechanical property of pure copper

    URL: Combating Label Noise for Lung Nodule Malignancy Grading

    Full text link
    Due to the complexity of annotation and inter-annotator variability, most lung nodule malignancy grading datasets contain label noise, which inevitably degrades the performance and generalizability of models. Although researchers adopt the label-noise-robust methods to handle label noise for lung nodule malignancy grading, they do not consider the inherent ordinal relation among classes of this task. To model the ordinal relation among classes to facilitate tackling label noise in this task, we propose a Unimodal-Regularized Label-noise-tolerant (URL) framework. Our URL contains two stages, the Supervised Contrastive Learning (SCL) stage and the Memory pseudo-labels generation and Unimodal regularization (MU) stage. In the SCL stage, we select reliable samples and adopt supervised contrastive learning to learn better representations. In the MU stage, we split samples with multiple annotations into multiple samples with a single annotation and shuffle them into different batches. To handle label noise, pseudo-labels are generated using the similarity between each sample and the central feature of each class, and temporal ensembling is used to obtain memory pseudo-labels that supervise the model training. To model the ordinal relation, we introduce unimodal regularization to keep the ordinal relation among classes in the predictions. Moreover, each lung nodule is characterized by three orthographic views. Experiments conducted on the LIDC-IDRI dataset indicate the superiority of our URL over other competing methods. Code is available at https://github.com/axz520/UR.Comment: 11 pages, accepted by DALI@MICCAI202

    ProSFDA: Prompt Learning based Source-free Domain Adaptation for Medical Image Segmentation

    Full text link
    The domain discrepancy existed between medical images acquired in different situations renders a major hurdle in deploying pre-trained medical image segmentation models for clinical use. Since it is less possible to distribute training data with the pre-trained model due to the huge data size and privacy concern, source-free unsupervised domain adaptation (SFDA) has recently been increasingly studied based on either pseudo labels or prior knowledge. However, the image features and probability maps used by pseudo label-based SFDA and the consistent prior assumption and the prior prediction network used by prior-guided SFDA may become less reliable when the domain discrepancy is large. In this paper, we propose a \textbf{Pro}mpt learning based \textbf{SFDA} (\textbf{ProSFDA}) method for medical image segmentation, which aims to improve the quality of domain adaption by minimizing explicitly the domain discrepancy. Specifically, in the prompt learning stage, we estimate source-domain images via adding a domain-aware prompt to target-domain images, then optimize the prompt via minimizing the statistic alignment loss, and thereby prompt the source model to generate reliable predictions on (altered) target-domain images. In the feature alignment stage, we also align the features of target-domain images and their styles-augmented counterparts to optimize the source model, and hence push the model to extract compact features. We evaluate our ProSFDA on two multi-domain medical image segmentation benchmarks. Our results indicate that the proposed ProSFDA outperforms substantially other SFDA methods and is even comparable to UDA methods. Code will be available at \url{https://github.com/ShishuaiHu/ProSFDA}
    • …
    corecore