3,993 research outputs found

    Role of thermal friction in relaxation of turbulent Bose-Einstein condensates

    Full text link
    In recent experiments, the relaxation dynamics of highly oblate, turbulent Bose-Einstein condensates (BECs) was investigated by measuring the vortex decay rates in various sample conditions [Phys. Rev. A 90\bf 90, 063627 (2014)] and, separately, the thermal friction coefficient α\alpha for vortex motion was measured from the long-time evolution of a corotating vortex pair in a BEC [Phys. Rev. A 92\bf 92, 051601(R) (2015)]. We present a comparative analysis of the experimental results, and find that the vortex decay rate Γ\Gamma is almost linearly proportional to α\alpha. We perform numerical simulations of the time evolution of a turbulent BEC using a point-vortex model equipped with longitudinal friction and vortex-antivortex pair annihilation, and observe that the linear dependence of Γ\Gamma on α\alpha is quantitatively accounted for in the dissipative point-vortex model. The numerical simulations reveal that thermal friction in the experiment was too strong to allow for the emergence of a vortex-clustered state out of decaying turbulence.Comment: 7 pages, 5 figure

    Prompt Tuning of Deep Neural Networks for Speaker-adaptive Visual Speech Recognition

    Full text link
    Visual Speech Recognition (VSR) aims to infer speech into text depending on lip movements alone. As it focuses on visual information to model the speech, its performance is inherently sensitive to personal lip appearances and movements, and this makes the VSR models show degraded performance when they are applied to unseen speakers. In this paper, to remedy the performance degradation of the VSR model on unseen speakers, we propose prompt tuning methods of Deep Neural Networks (DNNs) for speaker-adaptive VSR. Specifically, motivated by recent advances in Natural Language Processing (NLP), we finetune prompts on adaptation data of target speakers instead of modifying the pre-trained model parameters. Different from the previous prompt tuning methods mainly limited to Transformer variant architecture, we explore different types of prompts, the addition, the padding, and the concatenation form prompts that can be applied to the VSR model which is composed of CNN and Transformer in general. With the proposed prompt tuning, we show that the performance of the pre-trained VSR model on unseen speakers can be largely improved by using a small amount of adaptation data (e.g., less than 5 minutes), even if the pre-trained model is already developed with large speaker variations. Moreover, by analyzing the performance and parameters of different types of prompts, we investigate when the prompt tuning is preferred over the finetuning methods. The effectiveness of the proposed method is evaluated on both word- and sentence-level VSR databases, LRW-ID and GRID
    corecore