26,481 research outputs found
Parallel Opportunistic Routing in Wireless Networks
We study benefits of opportunistic routing in a large wireless ad hoc network
by examining how the power, delay, and total throughput scale as the number of
source- destination pairs increases up to the operating maximum. Our
opportunistic routing is novel in a sense that it is massively parallel, i.e.,
it is performed by many nodes simultaneously to maximize the opportunistic gain
while controlling the inter-user interference. The scaling behavior of
conventional multi-hop transmission that does not employ opportunistic routing
is also examined for comparison. Our results indicate that our opportunistic
routing can exhibit a net improvement in overall power--delay trade-off over
the conventional routing by providing up to a logarithmic boost in the scaling
law. Such a gain is possible since the receivers can tolerate more interference
due to the increased received signal power provided by the multi-user diversity
gain, which means that having more simultaneous transmissions is possible.Comment: 18 pages, 7 figures, Under Review for Possible Publication in IEEE
Transactions on Information Theor
Dust-Deficient Palomar-Green Quasars and the Diversity of AGN Intrinsic IR Emission
To elucidate the intrinsic broadband infrared (IR) emission properties of
active galactic nuclei (AGNs), we analyze the spectral energy distributions
(SEDs) of 87 z<0.5 Palomar-Green (PG) quasars. While the Elvis AGN template
with a moderate far-IR correction can reasonably match the SEDs of the AGN
components in ~60% of the sample (and is superior to alternatives such as that
by Assef), it fails on two quasar populations: 1) hot-dust-deficient (HDD)
quasars that show very weak emission thoroughly from the near-IR to the far-IR,
and 2) warm-dust-deficient (WDD) quasars that have similar hot dust emission as
normal quasars but are relatively faint in the mid- and far-IR. After building
composite AGN templates for these dust-deficient quasars, we successfully fit
the 0.3-500 {\mu}m SEDs of the PG sample with the appropriate AGN template, an
infrared template of a star-forming galaxy, and a host galaxy stellar template.
20 HDD and 12 WDD quasars are identified from the SED decomposition, including
seven ambiguous cases. Compared with normal quasars, the HDD quasars have AGN
with relatively low Eddington ratios and the fraction of WDD quasars increases
with AGN luminosity. Moreover, both the HDD and WDD quasar populations show
relatively stronger mid-IR silicate emission. Virtually identical SED
properties are also found in some quasars from z = 0.5 to 6. We propose a
conceptual model to demonstrate that the observed dust deficiency of quasars
can result from a change of structures of the circumnuclear tori that can occur
at any cosmic epoch.Comment: minor corrections to match the published versio
Nematic domains and resistivity in an itinerant metamagnet coupled to a lattice
The nature of the emergent phase near a putative quantum critical point in
the bilayer ruthenate SrRuO has been a recent subject of intensive
research. It has been suggested that this phase may possess electronic nematic
order(ENO). In this work, we investigate the possibility of nematic domain
formation in the emergent phase, using a phenomenological model of electrons
with ENO and its coupling to lattice degrees of freedom. The resistivity due to
the scattering off the domain walls is shown to closely follow the ENO
parameter. Our results provide qualitative explanations for the dependence of
the resistivity on external magnetic fields in SrRuO.Comment: 4 pages, 4 figures, published versio
Observation of a half step magnetization in the {Cu-3}-type triangular spin ring
We report pulsed field magnetization and ESR experiments on a {Cu-3} nanomagnet, where antiferromagnetically coupled Cu2+ (S=1/2) ions form a slightly distorted triangle. The remarkable feature is the observation of a half step magnetization, hysteresis loops, and an asymmetric magnetization between a positive and a negative field in a fast sweeping external field. This is attributed to an adiabatic change of magnetization. The energy levels determined by ESR unveil that the different mixing nature of a spin chirality of a total S=1/2 Kramers doublet by virtue of Dzyaloshinskii-Moriya interactions is decisive for inducing half step magnetization.</p
- β¦