1,603 research outputs found

    A second phase transition and superconductivity in the beta-pyrochlore oxide KOs2O6

    Full text link
    Another phase transition that is probably of first order is found in the beta-pyrochlore oxide superconductor KOs2O6 with a superconducting transition temperature Tc of 9.6 K. It takes place at Tp=7.5 K in the superconducting state in a zero magnetic field. By applying magnetic fields of up to 140 kOe, the Tc gradually decreased to 5.2 K, while Tp changed little, eventually breaking through the Hc2 line at approximately 65 kOe in the H-T diagram. Both the normal-state resistivity and Hc2 change slightly but significantly across the second phase transition. It is suggested that the transition is associated with the rattling of potassium ions located in an oversized cage of osmium and oxide ions.Comment: 10 pages including 6 figures; to be published in the Proceedings of HFM2006(J. Phys.: Condens. Matter

    A comparison of four systems of group mating for avoiding inbreeding

    Get PDF

    Anisotropic uniaxial pressure response of the Mott insulator Ca2RuO4

    Get PDF
    We have investigated the in-plane uniaxial pressure effect on the antiferromagnetic Mott insulator Ca2RuO4 from resistivity and magnetization measurements. We succeeded in inducing the ferromagnetic metallic phase at lower critical pressure than by hydrostatic pressure, indicating that the flattening distortion of the RuO6 octahedra is more easily released under in-plane uniaxial pressure. We also found a striking in-plane anisotropy in the pressure responses of various magnetic phases: Although the magnetization increases monotonically with pressure diagonal to the orthorhombic principal axes, the magnetization exhibits peculiar dependence on pressure along the in-plane orthorhombic principal axes. This peculiar dependence can be explained by a qualitative difference between the uniaxial pressure effects along the orthorhombic a and b axes, as well as by the presence of twin domain structures.Comment: Accepted for publication in Phys. Rev.

    NMR Observation of Rattling Phonons in the Pyrochlore Superconductor KOs2O6

    Full text link
    We report nuclear magnetic resonance studies on the beta-pyrochlore oxide superconductor KOs2O6. The nuclear relaxation at the K sites is entirely caused by fluctuations of electric field gradient, which we ascribe to highly anharmonic low frequency oscillation (rattling) of K ions. A phenomenological analysis shows a crossover from overdamped to underdamped behavior of the rattling phonons with decreasing temperature and its sudden sharpening below the superconducting transition temperature Tc. Absence of the Hebel-Slichter peak in the relaxation rate at the O sites below Tc also indicates strong electron-phonon coupling.Comment: 4 pages, 3 figure

    Strong-Coupling Theory of Rattling-Induced Superconductivity

    Full text link
    In order to clarify the mechanism of the enhancement of superconducting transition temperature TcT_{\rm c} due to anharmonic local oscillation of a guest ion in a cage composed of host atoms, i.e., {\it rattling}, we analyze the anharmonic Holstein model by applying the Migdal-Eliashberg theory. From the evaluation of the normal-state electron-phonon coupling constant, it is found that the strong coupling state is developed, when the bottom of a potential for the guest ion becomes wide and flat. Then, TcT_{\rm c} is enhanced with the increase of the anharmonicity in the potential, although TcT_{\rm c} is rather decreased when the potential becomes a double-well type due to very strong anharmonicity. From these results, we propose a scenario of anharmonicity-controlled strong-coupling tendency for superconductivity induced by rattling. We briefly discuss possible relevance of the present scenario with superconductivity in β\beta-pyrochlore oxides.Comment: 8 pages, 6 figure

    Anomalous In-Plane Anisotropy of the Onset of Superconductivity in (TMTSF)2ClO4

    Get PDF
    We report the magnetic field-amplitude and field-angle dependence of the superconducting onset temperature Tc_onset of the organic superconductor (TMTSF)2ClO4 in magnetic fields H accurately aligned to the conductive ab' plane. We revealed that the rapid increase of the onset fields at low temperatures occurs both for H // b' and H // a, irrespective of the carrier confinement. Moreover, in the vicinity of the Pauli limiting field, we report a shift of a principal axis of the in-plane field-angle dependence of Tc_onset away from the b' axis. This feature may be related to an occurrence of Fulde-Ferrell-Larkin-Ovchinnikov phases.Comment: 4 pages, 4 figure
    corecore