1,527 research outputs found

    Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds

    Full text link
    The evolution of a gas shell, swept by the supernova remnant of a massive first generation star, is studied with H_2 and HD chemistry taken into account. When a first-generation star explodes as a supernova, H_2 and HD molecules are formed in the swept gas shell and effectively cool the gas shell to temperatures of 32 K - 154 K. If the supernova remnant can sweep to gather the ambient gas, the gas shell comes to be dominated by its self-gravity, and hence, is expected to fragment. Our result shows that for a reasonable range of temperatures (200 K - 1000 K) of interstellar gas, the formation of second-generation stars can be triggered by a single supernova or hypernova.Comment: 38pages, 10 figures, The Astrophysical Journal, accepted 8 Dec. 200

    Effect of extreme data loss on long-range correlated and anti-correlated signals quantified by detrended fluctuation analysis

    Full text link
    We investigate how extreme loss of data affects the scaling behavior of long-range power-law correlated and anti-correlated signals applying the DFA method. We introduce a segmentation approach to generate surrogate signals by randomly removing data segments from stationary signals with different types of correlations. These surrogate signals are characterized by: (i) the DFA scaling exponent α\alpha of the original correlated signal, (ii) the percentage pp of the data removed, (iii) the average length Ό\mu of the removed (or remaining) data segments, and (iv) the functional form of the distribution of the length of the removed (or remaining) data segments. We find that the {\it global} scaling exponent of positively correlated signals remains practically unchanged even for extreme data loss of up to 90%. In contrast, the global scaling of anti-correlated signals changes to uncorrelated behavior even when a very small fraction of the data is lost. These observations are confirmed on the examples of human gait and commodity price fluctuations. We systematically study the {\it local} scaling behavior of signals with missing data to reveal deviations across scales. We find that for anti-correlated signals even 10% of data loss leads to deviations in the local scaling at large scales from the original anti-correlated towards uncorrelated behavior. In contrast, positively correlated signals show no observable changes in the local scaling for up to 65% of data loss, while for larger percentage, the local scaling shows overestimated regions (with higher local exponent) at small scales, followed by underestimated regions (with lower local exponent) at large scales. Finally, we investigate how the scaling is affected by the statistics of the remaining data segments in comparison to the removed segments

    Formation of Primordial Stars in a LCDM Universe

    Get PDF
    We study the formation of the first generation of stars in the standard cold dark matter model, using a very high-resolution hydordynamic simulations. Our simulation achieves a dynamic range of 10^{10} in length scale. With accurate treatment of atomic and molecular physics, it allows us to study the chemo-thermal evolution of primordial gas clouds to densities up to n = 10^{16}/cc without assuming any a priori equation of state; a six orders of magnitudes improvement over previous three-dimensional calculations. All the relevant atomic and molecular cooling and heating processes, including cooling by collision-induced continuum emission, are implemented. For calculating optically thick H2 cooling at high densities, we use the Sobolev method. To examine possible gas fragmentation owing to thermal instability, we compute explicitly the growth rate of isobaric perturbations. We show that the cloud core does not fragment in either the low-density or high-density regimes. We also show that the core remains stable against gravitational deformation and fragmentation. We obtain an accurate gas mass accretion rate within a 10 Msun innermost region around the protostar. The protostar is accreting the surrounding hot gas at a rate of 0.001-0.01 Msun/yr. From these findings we conclude that primordial stars formed in early minihalos are massive. We carry out proto-stellar evolution calculations using the obtained accretion rate. The resulting mass of the first star is M_ZAMS = 60-100 Msun, with the exact mass dependent on the actual accretion rate.Comment: 27 pages, 13 embedded figures. Revised versio

    Ação do fungicida mepronil no controle de Crinipellis perniciosa em cupuaçuzeiros, no campo.

    Get PDF
    Publicado tambĂ©m: FRAZÃO, D. A. C.; HOMMA, A. K. O; VIÉGAS, I. de J. M. (Ed.). Contribuição ao desenvolvimento da fruticultura na AmazĂŽnia. BelĂ©m, PA: Embrapa AmazĂŽnia Oriental, 2006. p. 453-457

    Effects of a burst of formation of first-generation stars on the evolution of galaxies

    Full text link
    First-generation (Population III) stars in the universe play an important role inearly enrichment of heavy elements in galaxies and intergalactic medium and thus affect the history of galaxies. The physical and chemical properties of primordial gas clouds are significantly different from those of present-day gas clouds observed in the nearby universe because the primordial gas clouds do not contain any heavy elements which are important coolants in the gas. Previous theoretical considerations have suggested that typical masses of the first-generation stars are between several M⊙M_\odot and ≈10M⊙\approx 10 M_\odot although it has been argued that the formation of very massive stars (e.g., >100M⊙> 100 M_\odot) is also likely. If stars with several M⊙M_\odot are most popular ones at the epoch of galaxy formation, most stars will evolve to hot (e.g., ≳105\gtrsim 10^5 K), luminous (∌104L⊙\sim 10^4 L_\odot) stars with gaseous and dusty envelope prior to going to die as white dwarf stars. Although the duration of this phase is short (e.g., ∌105\sim 10^5 yr), such evolved stars could contribute both to the ionization of gas in galaxies and to the production of a lot of dust grains if the formation of intermediate-mass stars is highly enhanced. We compare gaseous emission-line properties of such nebulae with some interesting high-redshift galaxies such asIRAS F10214+4724 and powerful radio galaxies.Comment: 25 pages, 7 figures, ApJ, in pres

    Primordial Star Formation under Far-ultraviolet radiation

    Full text link
    Thermal and chemical evolution of primordial gas clouds irradiated with far-ultraviolet (FUV; < 13.6 eV) radiation is investigated. In clouds irradiated by intense FUV radiation, sufficient hydrogen molecules to be important for cooling are never formed. However, even without molecular hydrogen, if the clouds are massive enough, they start collapsing via atomic hydrogen line cooling. Such clouds continue to collapse almost isothermally owing to successive cooling by H^{-} free-bound emission up to the number density of 10^{16} cm^{-3}. Inside the clouds, the Jeans mass eventually falls well below a solar mass. This indicates that hydrogen molecules are dispensable for low-mass primordial star formation, provided fragmentation of the clouds occurs at sufficiently high density.Comment: 32 pages and 9 figures. ApJ, in pres

    Disorder Effect on the Vortex Pinning by the Cooling Process Control in the Organic Superconductor Îș\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Full text link
    We investigate the influence of disorders in terminal ethylene groups of BEDT-TTF molecules (ethylene-disorders) on the vortex pinning of the organic superconductor Îș\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br. Magnetization measurements are performed under different cooling-processes. The second peak in the magnetization hysteresis curve is observed for all samples studied, and the hysteresis width of the magnetization becomes narrower by cooling faster. In contradiction to the simple pinning effect of disorder, this result shows the suppression of the vortex pinning force by introducing more ethylene-disorders. The ethylene-disorder domain model is proposed for explaining the observed result. In the case of the system containing a moderate number of the ethylene-disorders, the disordered molecules form a domain structure and it works as an effective pinning site. On the contrary, an excess number of the ethylene-disorders may weaken the effect of the domain structure, which results in the less effective pinning force on the vortices.Comment: 6 pages, 6 figure

    On the Mass of Population III Stars

    Get PDF
    Performing 1D hydrodynamical calculations coupled with non-equilibrium processes for H2 formation, we pursue the thermal and dynamical evolution of filamentary primordial clouds and attempt to make an estimate on the mass of population III stars. It is found that, almost independent of initial conditions, a filamentary cloud continues to collapse nearly isothermally due to H_2 cooling until the cloud becomes optically thick against the H_2 lines. During the collapse the cloud structure separates into two parts, i.e., a denser spindle and a diffuse envelope. The spindle contracts quasi-statically, and thus the line mass of the spindle keeps a characteristic value determined solely by the temperature (∌800\sim 800 K). Applying a linear theory, we find that the spindle is unstable against fragmentation during the collapse. The wavelength of the fastest growing perturbation lessens as the collapse proceeds. Consequently, successive fragmentation could occur. When the central density exceeds nc∌1010−11cm−3n_c \sim 10^{10-11} cm^{-3}, the successive fragmentation may cease since the cloud becomes opaque against the H_2 lines and the collapse decelerates appreciably. The mass of the first star is then expected to be typically ∌3M⊙\sim 3 M_\odot, which may grow up to ∌16M⊙\sim 16 M_\odot by accreting the diffuse envelope. Thus, the first-generation stars are anticipated to be massive but not supermassive.Comment: 23 pages, 6 figures, accepted by ApJ (April 10

    On the Initial Mass Function of Population III Stars

    Get PDF
    The collapse and fragmentation of filamentary primordial gas clouds are explored using 1D and 2D hydrodynamical simulations coupled with the nonequilibrium processes of H2 formation. The simulations show that depending upon the initial density,there are two occasions for the fragmentation of primordial filaments. If a filament has relatively low initial density, the radial contraction is slow due to less effective H2 cooling. This filament tends to fragment into dense clumps before the central density reaches 108−910^{8-9} cm−3^{-3}, where H2 cooling by three-body reactions is effective and the fragment mass is more massive than some tens M⊙M_\odot. In contrast, if a filament is initially dense, the more effective H2 cooling with the help of three-body reactions allows the filament to contract up to n∌1012n\sim 10^{12} cm−3^{-3}. After the density reaches n∌1012n\sim 10^{12} cm−3^{-3}, the filament becomes optically thick to H2 lines and the radial contraction subsequently almost stops. At this final hydrostatic stage, the fragment mass is lowered down to ≈1M⊙\approx 1M_\odot because of the high density of the filament. The dependence of the fragment mass upon the initial density could be translated into the dependence on the local amplitude of random Gaussian density fields or the epoch of the collapse of a parent cloud. Hence, it is predicted that the initial mass function of Population III stars is likely to be bimodal with peaks of ≈102M⊙\approx 10^2 M_\odot and ≈1M⊙\approx 1M_\odot, where the relative heights could be a function of the collapse epoch.Comment: Accepted by Ap

    Is Thermal Instability Significant in Turbulent Galactic Gas?

    Full text link
    We investigate numerically the role of thermal instability (TI) as a generator of density structures in the interstellar medium (ISM), both by itself and in the context of a globally turbulent medium. Simulations of the instability alone show that the condenstion process which forms a dense phase (``clouds'') is highly dynamical, and that the boundaries of the clouds are accretion shocks, rather than static density discontinuities. The density histograms (PDFs) of these runs exhibit either bimodal shapes or a single peak at low densities plus a slope change at high densities. Final static situations may be established, but the equilibrium is very fragile: small density fluctuations in the warm phase require large variations in the density of the cold phase, probably inducing shocks into the clouds. This result suggests that such configurations are highly unlikely. Simulations including turbulent forcing show that large- scale forcing is incapable of erasing the signature of the TI in the density PDFs, but small-scale, stellar-like forcing causes erasure of the signature of the instability. However, these simulations do not reach stationary regimes, TI driving an ever-increasing star formation rate. Simulations including magnetic fields, self-gravity and the Coriolis force show no significant difference between the PDFs of stable and unstable cases, and reach stationary regimes, suggesting that the combination of the stellar forcing and the extra effective pressure provided by the magnetic field and the Coriolis force overwhelm TI as a density-structure generator in the ISM. We emphasize that a multi-modal temperature PDF is not necessarily an indication of a multi-phase medium, which must contain clearly distinct thermal equilibrium phases.Comment: 18 pages, 11 figures. Submitted to Ap
    • 

    corecore